File size: 2,058 Bytes
529b65b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
---
license: apache-2.0
base_model: facebook/wav2vec2-base
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: test-model
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# test-model

This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6644
- Accuracy: 0.9596

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Accuracy |
|:-------------:|:------:|:----:|:---------------:|:--------:|
| No log        | 0.9771 | 32   | 2.2835          | 0.4242   |
| No log        | 1.9847 | 65   | 1.8355          | 0.6700   |
| No log        | 2.9924 | 98   | 1.4781          | 0.7576   |
| 2.2064        | 4.0    | 131  | 1.1889          | 0.8721   |
| 2.2064        | 4.9771 | 163  | 1.0536          | 0.8687   |
| 2.2064        | 5.9847 | 196  | 0.8963          | 0.8956   |
| 1.3725        | 6.9924 | 229  | 0.7865          | 0.9293   |
| 1.3725        | 8.0    | 262  | 0.7059          | 0.9495   |
| 1.3725        | 8.9771 | 294  | 0.6644          | 0.9596   |
| 0.9706        | 9.7710 | 320  | 0.6516          | 0.9596   |


### Framework versions

- Transformers 4.42.3
- Pytorch 2.1.2
- Datasets 2.20.0
- Tokenizers 0.19.1