---
base_model:
- akjindal53244/Llama-3.1-Storm-8B
- Sao10K/L3.1-8B-Niitama-v1.1
- v000000/L3.1-Niitorm-8B-t0.0001
library_name: transformers
tags:
- merge
- llama
- dpo
datasets:
- jondurbin/gutenberg-dpo-v0.1
---
# Llama-3.1-Niitorm-8B-DPO
* *DPO Trained, Llama3.1-8B.*
![image/png](https://cdn-uploads.huggingface.co/production/uploads/64f74b6e6389380c77562762/QeNjtwolNpxUmpo9NL7VI.png)
New: DPO'd Gutenberg Version (full epoch training).
RP model, Niitama 1.1 as a base, nearswapped with one of the smartest 3.1 models "Storm", then DPO'd, mostly abliterated.
Essentially, it's an improved Niitama 1.1
-------------------------------------------------------------------------------
*Gutenberg DPO creates more human-like prose/story writing and greately lessen synthetic feeling outputs.*
-------------------------------------------------------------------------------
# *llama.cpp:*
# thank you, mradermacher (GGUF)
* [GGUF static](https://huggingface.co/mradermacher/L3.1-Niitorm-8B-DPO-t0.0001-GGUF)
* [GGUF Imatrix](https://huggingface.co/mradermacher/L3.1-Niitorm-8B-DPO-t0.0001-i1-GGUF)
# v0 (GGUF)
* [GGUF Imatrix](https://huggingface.co/v000000/L3.1-Niitorm-8B-DPO-t0.0001-GGUFs-IMATRIX) *-only q8, q6 k, q5 k s, q4 k s, iq4 x s*
## Finetune and merge
This is a merge and finetune of pre-trained language models.
*Resultant merge finetuned* on [jondurbin/gutenberg-dpo-v0.1](https://huggingface.co/datasets/jondurbin/gutenberg-dpo-v0.1) for 1 epoch, 1.5e-5 learning rate, on Nvidia A100.
## Merge Details
### Merge Method
This model was merged using the NEARSWAP t0.0001 merge algorithm.
### Models Merged
The following models were included in the merge:
* Base Model: [Sao10K/L3.1-8B-Niitama-v1.1](https://huggingface.co/Sao10K/L3.1-8B-Niitama-v1.1) + [grimjim/Llama-3-Instruct-abliteration-LoRA-8B](https://huggingface.co/grimjim/Llama-3-Instruct-abliteration-LoRA-8B)
* [akjindal53244/Llama-3.1-Storm-8B](https://huggingface.co/akjindal53244/Llama-3.1-Storm-8B)
### Configuration
The following YAML configuration was used to produce this model:
```yaml
slices:
- sources:
- model: Sao10K/L3.1-8B-Niitama-v1.1+grimjim/Llama-3-Instruct-abliteration-LoRA-8B
layer_range: [0, 32]
- model: akjindal53244/Llama-3.1-Storm-8B
layer_range: [0, 32]
merge_method: nearswap
base_model: Sao10K/L3.1-8B-Niitama-v1.1+grimjim/Llama-3-Instruct-abliteration-LoRA-8B
parameters:
t:
- value: 0.0001
dtype: float16
# Then, DPO Finetune
# [jondurbin/gutenberg-dpo-v0.1](https://huggingface.co/datasets/jondurbin/gutenberg-dpo-v0.1)
```
### DPO Notes
*I used a higher learning rate and full dataset when training compared to my "L3.1-Celestial-Stone-2x8B-DPO". This caused lower loss and better adaption to the chosen style.*
-------------------------------------------------------------------------------
# Prompt Template:
```bash
<|begin_of_text|><|start_header_id|>system<|end_header_id|>
{system_prompt}<|eot_id|><|start_header_id|>user<|end_header_id|>
{input}<|eot_id|><|start_header_id|>assistant<|end_header_id|>
{output}<|eot_id|>
```
Credit to Alchemonaut.
Credit to Sao10K.
Credit to Grimjim.
Credit to mlabonne.
Credit to jondurbin.
Credit to woofwolfy.