File size: 6,529 Bytes
21cf3e2
 
 
 
b4d596a
 
12aaed2
 
 
 
b4d596a
 
12aaed2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21cf3e2
 
b4d596a
 
 
 
0bb2561
b4d596a
39e065e
9b9d1c4
e21cd49
b4d596a
2658768
 
b4d596a
 
8df791f
fc5adf3
 
 
8e13f1f
ebb040b
6453f01
 
 
 
 
 
99cef25
 
 
 
6453f01
 
11c7ff5
ebb040b
fc5adf3
e695cdc
b4d596a
 
 
46c4eb9
21cf3e2
 
 
 
b4d596a
21cf3e2
 
 
 
b4d596a
 
21cf3e2
 
 
 
 
 
b4d596a
 
 
 
 
 
 
 
 
 
 
a34150b
23620ba
 
5aa63ab
23620ba
b4d596a
 
037aef8
 
5aa63ab
9b9d1c4
037aef8
 
b4d596a
 
 
 
 
 
 
 
 
21cf3e2
 
9b9d1c4
b4d596a
 
037aef8
 
 
 
 
 
9b9d1c4
 
12aaed2
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
---
library_name: transformers
tags:
- merge
- llama
- dpo
base_model:
- akjindal53244/Llama-3.1-Storm-8B
- Sao10K/L3.1-8B-Niitama-v1.1
- v000000/L3.1-Niitorm-8B-t0.0001
datasets:
- jondurbin/gutenberg-dpo-v0.1
model-index:
- name: L3.1-Niitorm-8B-DPO-t0.0001
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: IFEval (0-Shot)
      type: HuggingFaceH4/ifeval
      args:
        num_few_shot: 0
    metrics:
    - type: inst_level_strict_acc and prompt_level_strict_acc
      value: 76.89
      name: strict accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=v000000/L3.1-Niitorm-8B-DPO-t0.0001
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: BBH (3-Shot)
      type: BBH
      args:
        num_few_shot: 3
    metrics:
    - type: acc_norm
      value: 30.51
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=v000000/L3.1-Niitorm-8B-DPO-t0.0001
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MATH Lvl 5 (4-Shot)
      type: hendrycks/competition_math
      args:
        num_few_shot: 4
    metrics:
    - type: exact_match
      value: 14.88
      name: exact match
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=v000000/L3.1-Niitorm-8B-DPO-t0.0001
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GPQA (0-shot)
      type: Idavidrein/gpqa
      args:
        num_few_shot: 0
    metrics:
    - type: acc_norm
      value: 5.93
      name: acc_norm
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=v000000/L3.1-Niitorm-8B-DPO-t0.0001
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MuSR (0-shot)
      type: TAUR-Lab/MuSR
      args:
        num_few_shot: 0
    metrics:
    - type: acc_norm
      value: 7.26
      name: acc_norm
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=v000000/L3.1-Niitorm-8B-DPO-t0.0001
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU-PRO (5-shot)
      type: TIGER-Lab/MMLU-Pro
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 31.85
      name: accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=v000000/L3.1-Niitorm-8B-DPO-t0.0001
      name: Open LLM Leaderboard
---

# Llama-3.1-Niitorm-8B-DPO

* *DPO Trained, Llama3.1-8B.*

![image/png](https://cdn-uploads.huggingface.co/production/uploads/64f74b6e6389380c77562762/QeNjtwolNpxUmpo9NL7VI.png)

<b>New: DPO'd Gutenberg Version (full epoch training).</b>

RP model, Niitama 1.1 as a base, nearswapped with one of the smartest 3.1 models "Storm", then DPO'd, mostly abliterated.

Essentially, it's an improved Niitama 1.1

-------------------------------------------------------------------------------

*Gutenberg DPO creates more human-like prose/story writing and greately lessen synthetic feeling outputs.*

-------------------------------------------------------------------------------

# *llama.cpp:*

# thank you, mradermacher (GGUF)

* [GGUF static](https://huggingface.co/mradermacher/L3.1-Niitorm-8B-DPO-t0.0001-GGUF)

* [GGUF Imatrix](https://huggingface.co/mradermacher/L3.1-Niitorm-8B-DPO-t0.0001-i1-GGUF)

# thank you, QuantFactory (GGUF)

* [GGUF static](https://huggingface.co/QuantFactory/L3.1-Niitorm-8B-DPO-t0.0001-GGUF)

# v0 (GGUF)

* [GGUF Imatrix](https://huggingface.co/v000000/L3.1-Niitorm-8B-DPO-t0.0001-GGUFs-IMATRIX) *-only q8, q6 k, q5 k s, q4 k s, iq4 x s*


## Finetune and merge

This is a merge and finetune of pre-trained language models.

*Resultant merge finetuned* on [jondurbin/gutenberg-dpo-v0.1](https://huggingface.co/datasets/jondurbin/gutenberg-dpo-v0.1) for 1 epoch, 1.5e-5 learning rate, on Nvidia A100.

## Merge Details
### Merge Method

This model was merged using the <b>NEARSWAP t0.0001</b> merge algorithm.

### Models Merged

The following models were included in the merge:
* Base Model: [Sao10K/L3.1-8B-Niitama-v1.1](https://huggingface.co/Sao10K/L3.1-8B-Niitama-v1.1) + [grimjim/Llama-3-Instruct-abliteration-LoRA-8B](https://huggingface.co/grimjim/Llama-3-Instruct-abliteration-LoRA-8B)
* [akjindal53244/Llama-3.1-Storm-8B](https://huggingface.co/akjindal53244/Llama-3.1-Storm-8B)

### Configuration

The following YAML configuration was used to produce this model:

```yaml
slices:
  - sources:
      - model: Sao10K/L3.1-8B-Niitama-v1.1+grimjim/Llama-3-Instruct-abliteration-LoRA-8B
        layer_range: [0, 32]
      - model: akjindal53244/Llama-3.1-Storm-8B
        layer_range: [0, 32]
merge_method: nearswap
base_model: Sao10K/L3.1-8B-Niitama-v1.1+grimjim/Llama-3-Instruct-abliteration-LoRA-8B
parameters:
  t:
    - value: 0.0001
dtype: float16

# Then, DPO Finetune
# [jondurbin/gutenberg-dpo-v0.1](https://huggingface.co/datasets/jondurbin/gutenberg-dpo-v0.1)

```

### DPO Notes

*I used a higher learning rate and full dataset when training compared to my "L3.1-Celestial-Stone-2x8B-DPO". This caused lower loss and better adaption to the chosen style.*

-------------------------------------------------------------------------------

# Prompt Template:
```bash
<|begin_of_text|><|start_header_id|>system<|end_header_id|>

{system_prompt}<|eot_id|><|start_header_id|>user<|end_header_id|>

{input}<|eot_id|><|start_header_id|>assistant<|end_header_id|>

{output}<|eot_id|>

```

Credit to Alchemonaut.

Credit to Sao10K.

Credit to Grimjim.

Credit to mlabonne.

Credit to jondurbin.

Credit to woofwolfy.
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_v000000__L3.1-Niitorm-8B-DPO-t0.0001)

|      Metric       |Value|
|-------------------|----:|
|Avg.               |27.89|
|IFEval (0-Shot)    |76.89|
|BBH (3-Shot)       |30.51|
|MATH Lvl 5 (4-Shot)|14.88|
|GPQA (0-shot)      | 5.93|
|MuSR (0-shot)      | 7.26|
|MMLU-PRO (5-shot)  |31.85|