# QuReTec: query resolution model QuReTeC is a query resolution model. It finds the relevant terms in a question history. It is based on **bert-large-uncased** with a max sequence length of 300. # Config details Training and evaluation was done using the following BertConfig: ```json BertConfig { "_name_or_path": "uva-irlab/quretec", "architectures": ["BertForMaskedLM"], "attention_probs_dropout_prob": 0.1, "finetuning_task": "ner", "gradient_checkpointing": false, "hidden_act": "gelu", "hidden_dropout_prob": 0.4, "hidden_size": 1024, "id2label": { "0": "[PAD]", "1": "O", "2": "REL", "3": "[CLS]", "4": "[SEP]" }, "initializer_range": 0.02, "intermediate_size": 4096, "label2id": { "O": 1, "REL": 2, "[CLS]": 3, "[PAD]": 0, "[SEP]": 4 }, "layer_norm_eps": 1e-12, "max_position_embeddings": 512, "model_type": "bert", "num_attention_heads": 16, "num_hidden_layers": 24, "pad_token_id": 0, "position_embedding_type": "absolute", "transformers_version": "4.6.1", "type_vocab_size": 2, "use_cache": true, "vocab_size": 30522 } ``` # Original authors QuReTeC model from the published SIGIR 2020 paper: Query Resolution for Conversational Search with Limited Supervision by N. Voskarides, D. Li, P. Ren, E. Kanoulas and M. de Rijke. [[pdf]](https://arxiv.org/abs/2005.11723). # Contributions Uploaded by G. Scheuer ([website](https://giguruscheuer.com))