Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,35 @@
|
|
1 |
-
---
|
2 |
-
license: apache-2.0
|
3 |
-
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
---
|
4 |
+
|
5 |
+
A 135M SmolLm model trained on 10M words for babyLM challenge.
|
6 |
+
You can test the model:
|
7 |
+
|
8 |
+
```python
|
9 |
+
import torch
|
10 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
11 |
+
|
12 |
+
def load_model(model_name):
|
13 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
14 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
15 |
+
return tokenizer, model
|
16 |
+
|
17 |
+
def generate_text(prompt, tokenizer, model, max_length=100):
|
18 |
+
inputs = tokenizer(prompt, return_tensors="pt")
|
19 |
+
|
20 |
+
with torch.no_grad():
|
21 |
+
output = model.generate(**inputs, max_length=max_length, num_return_sequences=1)
|
22 |
+
|
23 |
+
generated_text = tokenizer.decode(output[0], skip_special_tokens=True)
|
24 |
+
return generated_text
|
25 |
+
|
26 |
+
model_name = "universitytehran/SmolLM-135M-10M-word"
|
27 |
+
|
28 |
+
tokenizer, model = load_model(model_name)
|
29 |
+
|
30 |
+
prompt = "Once upon a time"
|
31 |
+
completed_text = generate_text(prompt, tokenizer, model)
|
32 |
+
|
33 |
+
print(f"Prompt: {prompt}")
|
34 |
+
print(f"Completed text: {completed_text}")
|
35 |
+
```
|