--- license: apache-2.0 library_name: peft tags: - generated_from_trainer base_model: premai-io/prem-1B-chat model-index: - name: prem-1B-chat-32k results: [] --- [Built with Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl)
See axolotl config axolotl version: `0.4.0` ```yaml base_model: premai-io/prem-1B-chat model_type: LlamaForCausalLM tokenizer_type: AutoTokenizer load_in_8bit: false load_in_4bit: false strict: false datasets: - path: argilla/distilabel-capybara-dpo-7k-binarized type: orpo.chat_template dataset_prepared_path: last_run_prepared val_set_size: 0.001 output_dir: ./prem-1B-chat-32k save_safetensors: true sequence_len: 8192 sample_packing: false pad_to_sequence_len: false use_pose: true pose_max_context_len: 262144 min_sample_len: 6144 pose_num_chunks: 16 curriculum_sampling: true overrides_of_model_config: rope_theta: 500000.0 max_position_embeddings: 262144 # peft_use_dora: true adapter: lora peft_use_rslora: true lora_model_dir: lora_r: 1024 lora_alpha: 1024 lora_dropout: 0.1 lora_target_modules: - q_proj - k_proj - v_proj - o_proj lora_modules_to_save: - embed_tokens - lm_head wandb_project: wandb_entity: wandb_watch: wandb_name: wandb_log_model: gradient_accumulation_steps: 8 micro_batch_size: 1 num_epochs: 20 optimizer: adamw_bnb_8bit lr_scheduler: cosine learning_rate: 0.00001 max_grad_norm: 1.0 adam_beta2: 0.95 train_on_inputs: false group_by_length: false bf16: true fp16: tf32: false gradient_checkpointing: true gradient_checkpointing_kwargs: use_reentrant: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true sdp_attention: s2_attention: warmup_steps: 10 evals_per_epoch: 8 saves_per_epoch: 8 debug: deepspeed: weight_decay: 0.0 fsdp: fsdp_config: special_tokens: pad_token: <|end_of_text|> ```

# prem-1B-chat-32k This model is a fine-tuned version of [premai-io/prem-1B-chat](https://huggingface.co/premai-io/prem-1B-chat) on the Argilla DPO dataset. 32K context extended using [PoSE](https://arxiv.org/abs/2309.10400) method It achieves the following results on the evaluation set: - Loss: 6.9843 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 8 - total_train_batch_size: 64 - total_eval_batch_size: 8 - optimizer: Adam with betas=(0.9,0.95) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.5389 | 1.0 | 1 | 6.3469 | | 0.5389 | 2.0 | 2 | 6.2533 | | 0.5017 | 3.0 | 3 | 6.2101 | | 0.4689 | 4.0 | 4 | 6.3163 | | 0.3604 | 5.0 | 5 | 6.4144 | | 0.3107 | 6.0 | 6 | 6.4127 | | 0.2698 | 7.0 | 7 | 6.8089 | | 0.317 | 8.0 | 8 | 7.3388 | | 0.2228 | 9.0 | 9 | 6.5063 | | 0.1798 | 10.0 | 10 | 5.7073 | | 0.1436 | 11.0 | 11 | 5.1185 | | 0.1183 | 12.0 | 12 | 4.8994 | | 0.1002 | 13.0 | 13 | 4.8033 | | 0.0865 | 14.0 | 14 | 5.1707 | | 0.0758 | 15.0 | 15 | 5.7089 | | 0.0663 | 16.0 | 16 | 6.4052 | | 0.0601 | 17.0 | 17 | 6.7814 | | 0.0545 | 18.0 | 18 | 6.9586 | | 0.0505 | 19.0 | 19 | 6.9766 | | 0.0482 | 20.0 | 20 | 6.9843 | ### Framework versions - PEFT 0.10.0 - Transformers 4.40.0.dev0 - Pytorch 2.1.2+cu121 - Datasets 2.15.0 - Tokenizers 0.15.0