File size: 4,365 Bytes
5448164 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 |
---
license: apache-2.0
library_name: peft
tags:
- generated_from_trainer
base_model: premai-io/prem-1B-chat
model-index:
- name: prem-1B-chat-32k
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.0`
```yaml
base_model: premai-io/prem-1B-chat
model_type: LlamaForCausalLM
tokenizer_type: AutoTokenizer
load_in_8bit: false
load_in_4bit: false
strict: false
datasets:
- path: argilla/distilabel-capybara-dpo-7k-binarized
type: orpo.chat_template
dataset_prepared_path: last_run_prepared
val_set_size: 0.001
output_dir: ./prem-1B-chat-32k
save_safetensors: true
sequence_len: 8192
sample_packing: false
pad_to_sequence_len: false
use_pose: true
pose_max_context_len: 262144
min_sample_len: 6144
pose_num_chunks: 16
curriculum_sampling: true
overrides_of_model_config:
rope_theta: 500000.0
max_position_embeddings: 262144
# peft_use_dora: true
adapter: lora
peft_use_rslora: true
lora_model_dir:
lora_r: 1024
lora_alpha: 1024
lora_dropout: 0.1
lora_target_modules:
- q_proj
- k_proj
- v_proj
- o_proj
lora_modules_to_save:
- embed_tokens
- lm_head
wandb_project:
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
gradient_accumulation_steps: 8
micro_batch_size: 1
num_epochs: 20
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.00001
max_grad_norm: 1.0
adam_beta2: 0.95
train_on_inputs: false
group_by_length: false
bf16: true
fp16:
tf32: false
gradient_checkpointing: true
gradient_checkpointing_kwargs:
use_reentrant: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
sdp_attention:
s2_attention:
warmup_steps: 10
evals_per_epoch: 8
saves_per_epoch: 8
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
pad_token: <|end_of_text|>
```
</details><br>
# prem-1B-chat-32k
This model is a fine-tuned version of [premai-io/prem-1B-chat](https://huggingface.co/premai-io/prem-1B-chat) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 6.9843
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 8
- total_train_batch_size: 64
- total_eval_batch_size: 8
- optimizer: Adam with betas=(0.9,0.95) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 20
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 0.5389 | 1.0 | 1 | 6.3469 |
| 0.5389 | 2.0 | 2 | 6.2533 |
| 0.5017 | 3.0 | 3 | 6.2101 |
| 0.4689 | 4.0 | 4 | 6.3163 |
| 0.3604 | 5.0 | 5 | 6.4144 |
| 0.3107 | 6.0 | 6 | 6.4127 |
| 0.2698 | 7.0 | 7 | 6.8089 |
| 0.317 | 8.0 | 8 | 7.3388 |
| 0.2228 | 9.0 | 9 | 6.5063 |
| 0.1798 | 10.0 | 10 | 5.7073 |
| 0.1436 | 11.0 | 11 | 5.1185 |
| 0.1183 | 12.0 | 12 | 4.8994 |
| 0.1002 | 13.0 | 13 | 4.8033 |
| 0.0865 | 14.0 | 14 | 5.1707 |
| 0.0758 | 15.0 | 15 | 5.7089 |
| 0.0663 | 16.0 | 16 | 6.4052 |
| 0.0601 | 17.0 | 17 | 6.7814 |
| 0.0545 | 18.0 | 18 | 6.9586 |
| 0.0505 | 19.0 | 19 | 6.9766 |
| 0.0482 | 20.0 | 20 | 6.9843 |
### Framework versions
- PEFT 0.10.0
- Transformers 4.40.0.dev0
- Pytorch 2.1.2+cu121
- Datasets 2.15.0
- Tokenizers 0.15.0 |