File size: 4,365 Bytes
5448164
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
---
license: apache-2.0
library_name: peft
tags:
- generated_from_trainer
base_model: premai-io/prem-1B-chat
model-index:
- name: prem-1B-chat-32k
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
<details><summary>See axolotl config</summary>

axolotl version: `0.4.0`
```yaml
base_model: premai-io/prem-1B-chat
model_type: LlamaForCausalLM
tokenizer_type: AutoTokenizer

load_in_8bit: false
load_in_4bit: false
strict: false

datasets:
  - path: argilla/distilabel-capybara-dpo-7k-binarized
    type: orpo.chat_template
dataset_prepared_path: last_run_prepared
val_set_size: 0.001
output_dir: ./prem-1B-chat-32k
save_safetensors: true
sequence_len: 8192
sample_packing: false
pad_to_sequence_len: false
use_pose: true
pose_max_context_len: 262144
min_sample_len: 6144
pose_num_chunks: 16
curriculum_sampling: true

overrides_of_model_config:
  rope_theta: 500000.0
  max_position_embeddings: 262144

  # peft_use_dora: true
adapter: lora
peft_use_rslora: true
lora_model_dir:
lora_r: 1024
lora_alpha: 1024
lora_dropout: 0.1
lora_target_modules:
  - q_proj
  - k_proj
  - v_proj
  - o_proj
lora_modules_to_save:
  - embed_tokens
  - lm_head

wandb_project:
wandb_entity: 
wandb_watch:
wandb_name:
wandb_log_model:

gradient_accumulation_steps: 8
micro_batch_size: 1
num_epochs: 20
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.00001
max_grad_norm: 1.0
adam_beta2: 0.95

train_on_inputs: false
group_by_length: false
bf16: true
fp16:
tf32: false

gradient_checkpointing: true
gradient_checkpointing_kwargs:
  use_reentrant: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
sdp_attention:
s2_attention:

warmup_steps: 10
evals_per_epoch: 8
saves_per_epoch: 8
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
  pad_token: <|end_of_text|>



```

</details><br>

# prem-1B-chat-32k

This model is a fine-tuned version of [premai-io/prem-1B-chat](https://huggingface.co/premai-io/prem-1B-chat) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 6.9843

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 8
- total_train_batch_size: 64
- total_eval_batch_size: 8
- optimizer: Adam with betas=(0.9,0.95) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 20

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 0.5389        | 1.0   | 1    | 6.3469          |
| 0.5389        | 2.0   | 2    | 6.2533          |
| 0.5017        | 3.0   | 3    | 6.2101          |
| 0.4689        | 4.0   | 4    | 6.3163          |
| 0.3604        | 5.0   | 5    | 6.4144          |
| 0.3107        | 6.0   | 6    | 6.4127          |
| 0.2698        | 7.0   | 7    | 6.8089          |
| 0.317         | 8.0   | 8    | 7.3388          |
| 0.2228        | 9.0   | 9    | 6.5063          |
| 0.1798        | 10.0  | 10   | 5.7073          |
| 0.1436        | 11.0  | 11   | 5.1185          |
| 0.1183        | 12.0  | 12   | 4.8994          |
| 0.1002        | 13.0  | 13   | 4.8033          |
| 0.0865        | 14.0  | 14   | 5.1707          |
| 0.0758        | 15.0  | 15   | 5.7089          |
| 0.0663        | 16.0  | 16   | 6.4052          |
| 0.0601        | 17.0  | 17   | 6.7814          |
| 0.0545        | 18.0  | 18   | 6.9586          |
| 0.0505        | 19.0  | 19   | 6.9766          |
| 0.0482        | 20.0  | 20   | 6.9843          |


### Framework versions

- PEFT 0.10.0
- Transformers 4.40.0.dev0
- Pytorch 2.1.2+cu121
- Datasets 2.15.0
- Tokenizers 0.15.0