File size: 1,617 Bytes
97e1b27
67b19bd
97e1b27
67b19bd
57f5cfc
67b19bd
57f5cfc
67b19bd
 
97e1b27
 
 
 
 
35168a4
97e1b27
67b19bd
97e1b27
67b19bd
 
 
 
97e1b27
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
67b19bd
97e1b27
 
 
67b19bd
 
97e1b27
67b19bd
 
97e1b27
 
 
 
 
 
 
 
67b19bd
97e1b27
 
 
 
 
 
 
67b19bd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
---
base_model: ubaada/pegasus-x-large-booksum-16k
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: pegasus-x-large-booksum-16k
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# pegasus-x-large-booksum-16k

This model is a fine-tuned version of [ubaada/pegasus-x-large-booksum-16k](https://huggingface.co/ubaada/pegasus-x-large-booksum-16k) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.9879
- Rouge1: 0.2983
- Rouge2: 0.0463
- Rougel: 0.1367

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 4e-05
- train_batch_size: 8
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 2
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- total_eval_batch_size: 2
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Rouge1 | Rouge2 | Rougel |
|:-------------:|:------:|:----:|:---------------:|:------:|:------:|:------:|
| 1.3846        | 0.9992 | 314  | 1.9879          | 0.2983 | 0.0463 | 0.1367 |


### Framework versions

- Transformers 4.40.2
- Pytorch 2.2.0
- Datasets 2.19.1
- Tokenizers 0.19.1