File size: 2,596 Bytes
7247cd3 8d1bf65 7247cd3 8d1bf65 7247cd3 8d1bf65 7247cd3 8d1bf65 7247cd3 8d1bf65 7247cd3 8d1bf65 7247cd3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 |
---
license: apache-2.0
base_model: facebook/wav2vec2-large-lv60
tags:
- automatic-speech-recognition
- edinburghcstr/ami
- generated_from_trainer
datasets:
- ami
metrics:
- wer
model-index:
- name: facebook/wav2vec2-large-lv60
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: EDINBURGHCSTR/AMI - IHM
type: ami
config: ihm
split: None
args: 'Config: ihm, Training split: train, Eval split: validation'
metrics:
- name: Wer
type: wer
value: 0.9542044754234227
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# facebook/wav2vec2-large-lv60
This model is a fine-tuned version of [facebook/wav2vec2-large-lv60](https://huggingface.co/facebook/wav2vec2-large-lv60) on the EDINBURGHCSTR/AMI - IHM dataset.
It achieves the following results on the evaluation set:
- Loss: 1.2723
- Wer: 0.9542
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 2.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:------:|:-----:|:---------------:|:------:|
| 1.0919 | 0.1565 | 1000 | 1.0169 | 0.7064 |
| 1.4768 | 0.3131 | 2000 | 0.7156 | 0.4356 |
| 0.9728 | 0.4696 | 3000 | 0.6462 | 0.4030 |
| 0.5418 | 0.6262 | 4000 | 0.6171 | 0.3707 |
| 0.8492 | 0.7827 | 5000 | 0.5758 | 0.3695 |
| 1.4826 | 0.9393 | 6000 | 0.5801 | 0.3545 |
| 0.3274 | 1.0958 | 7000 | 0.5244 | 0.3375 |
| 0.2089 | 1.2523 | 8000 | 0.5047 | 0.3239 |
| 0.2916 | 1.4089 | 9000 | 0.4901 | 0.3171 |
| 0.1617 | 1.5654 | 10000 | 0.5070 | 0.3151 |
| 0.3815 | 1.7220 | 11000 | 0.4948 | 0.3180 |
| 1.0171 | 1.8785 | 12000 | 0.9465 | 0.8379 |
### Framework versions
- Transformers 4.42.0.dev0
- Pytorch 2.3.0a0+gitcd033a1
- Datasets 2.19.1
- Tokenizers 0.19.1
|