--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers - negation license: mit language: - en datasets: - tum-nlp/cannot-dataset --- # NegMPNet This is a negation-aware version of [all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2). It is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. For further information, see our paper [This is not correct! Negation-aware Evaluation of Language Generation Systems](https://arxiv.org/abs/2307.13989). ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer("tum-nlp/NegMPNet") embeddings = model.encode(sentences) print(embeddings) ``` ## Negation-awareness This model has a better sensitivity towards negations compared to its base model. You can try it yourself: ```python from sentence_transformers import SentenceTransformer, util import torch base_model = SentenceTransformer("sentence-transformers/all-mpnet-base-v2") finetuned_model = SentenceTransformer("tum-nlp/NegMPNet") def cos_similarities(references: list, candidates: list, model: SentenceTransformer, batch_size=8) -> torch.Tensor: assert len(references) == len(candidates), "Number of references and candidates must be equal" emb_ref = model.encode(references, batch_size=batch_size) emb_cand = model.encode(candidates, batch_size=batch_size) return torch.diag(util.cos_sim(emb_ref, emb_cand)) references = ["Ray charles is legendary.", "Ray charles is legendary"] candidates = ["Ray charles is a legend.", "Ray charles isn't legendary."] print(cos_similarities(references, candidates, base_model)) # prints tensor([0.9453, 0.8683]) -> no negation-awareness print(cos_similarities(references, candidates, finetuned_model)) # prints tensor([0.9585, 0.4263]) -> sensitive to negation ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained("tum-nlp/NegMPNet") model = AutoModel.from_pretrained("tum-nlp/NegMPNet") # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `sentence_transformers.datasets.NoDuplicatesDataLoader.NoDuplicatesDataLoader` of length 358 with parameters: ``` {'batch_size': 64} ``` **Loss**: `__main__.MultipleNegativesRankingLoss` with parameters: ``` {'scale': 20.0, 'similarity_fct': 'cos_sim'} ``` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 35, "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator", "max_grad_norm": 1, "optimizer_class": "", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 36, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 75, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citation Please cite our [INLG 2023 paper](https://arxiv.org/abs/2307.13989), if you use our model. **BibTeX:** ```bibtex @misc{anschütz2023correct, title={This is not correct! Negation-aware Evaluation of Language Generation Systems}, author={Miriam Anschütz and Diego Miguel Lozano and Georg Groh}, year={2023}, eprint={2307.13989}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```