File size: 5,589 Bytes
783c190 b46a7db 5373044 f1e58a5 783c190 b46a7db 5373044 b46a7db d51a521 f1e58a5 b46a7db 5373044 b46a7db 5373044 b46a7db 5373044 b46a7db 5373044 b46a7db f1e58a5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 |
---
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
- transformers
- negation
license: mit
language:
- en
datasets:
- tum-nlp/cannot-dataset
---
# NegMPNet
This is a negation-aware version of [all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2).
It is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
For further information, see our paper [This is not correct! Negation-aware Evaluation of Language Generation Systems](https://arxiv.org/abs/2307.13989).
<!--- Describe your model here -->
## Usage (Sentence-Transformers)
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
```
pip install -U sentence-transformers
```
Then you can use the model like this:
```python
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer("tum-nlp/NegMPNet")
embeddings = model.encode(sentences)
print(embeddings)
```
## Negation-awareness
This model has a better sensitivity towards negations compared to its base model. You can try it yourself:
```python
from sentence_transformers import SentenceTransformer, util
import torch
base_model = SentenceTransformer("sentence-transformers/all-mpnet-base-v2")
finetuned_model = SentenceTransformer("tum-nlp/NegMPNet")
def cos_similarities(references: list, candidates: list, model: SentenceTransformer, batch_size=8) -> torch.Tensor:
assert len(references) == len(candidates), "Number of references and candidates must be equal"
emb_ref = model.encode(references, batch_size=batch_size)
emb_cand = model.encode(candidates, batch_size=batch_size)
return torch.diag(util.cos_sim(emb_ref, emb_cand))
references = ["Ray charles is legendary.", "Ray charles is legendary"]
candidates = ["Ray charles is a legend.", "Ray charles isn't legendary."]
print(cos_similarities(references, candidates, base_model)) # prints tensor([0.9453, 0.8683]) -> no negation-awareness
print(cos_similarities(references, candidates, finetuned_model)) # prints tensor([0.9585, 0.4263]) -> sensitive to negation
```
## Usage (HuggingFace Transformers)
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
```python
from transformers import AutoTokenizer, AutoModel
import torch
#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
# Sentences we want sentence embeddings for
sentences = ['This is an example sentence', 'Each sentence is converted']
# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained("tum-nlp/NegMPNet")
model = AutoModel.from_pretrained("tum-nlp/NegMPNet")
# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
# Compute token embeddings
with torch.no_grad():
model_output = model(**encoded_input)
# Perform pooling. In this case, mean pooling.
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
```
## Evaluation Results
<!--- Describe how your model was evaluated -->
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})
## Training
The model was trained with the parameters:
**DataLoader**:
`sentence_transformers.datasets.NoDuplicatesDataLoader.NoDuplicatesDataLoader` of length 358 with parameters:
```
{'batch_size': 64}
```
**Loss**:
`__main__.MultipleNegativesRankingLoss` with parameters:
```
{'scale': 20.0, 'similarity_fct': 'cos_sim'}
```
Parameters of the fit()-Method:
```
{
"epochs": 1,
"evaluation_steps": 35,
"evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator",
"max_grad_norm": 1,
"optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
"optimizer_params": {
"lr": 2e-05
},
"scheduler": "WarmupLinear",
"steps_per_epoch": null,
"warmup_steps": 36,
"weight_decay": 0.01
}
```
## Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 75, 'do_lower_case': False}) with Transformer model: MPNetModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)
```
## Citation
Please cite our [INLG 2023 paper](https://arxiv.org/abs/2307.13989), if you use our model.
**BibTeX:**
```bibtex
@misc{anschütz2023correct,
title={This is not correct! Negation-aware Evaluation of Language Generation Systems},
author={Miriam Anschütz and Diego Miguel Lozano and Georg Groh},
year={2023},
eprint={2307.13989},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
``` |