--- license: mit language: - en pipeline_tag: text-classification --- # Model Card for Model NegBLEURT This model is a negation-aware version of the BLEURT metric for evaluation of generated text. ### Direct Use ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification model_name = "tum-nlp/NegBLEURT" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForSequenceClassification.from_pretrained(model_name) references = ["Ray Charles is legendary.", "Ray Charles is legendary."] candidates = ["Ray Charles is a legend.", "Ray Charles isn’t legendary."] tokenized = tokenizer(references, cadidates, return_tensors='pt', padding=True) print(model(**tokenized).logits) # returns scores 0.8409 and 0.2601 for the two candidates ``` ### Use with pipeline ```python from transformers import pipeline pipe = pipeline("text-classification", model="tum-nlp/NegBLEURT") pairwise_input = [ [["Ray Charles is legendary.", "Ray Charles is a legend."]], [["Ray Charles is legendary.", "Ray Charles isn’t legendary."]] ] print(pipe(pairwise_input, function_to_apply="none")) # returns [{'label': 'NegBLEURT_score', 'score': 0.8408917784690857}, {'label': 'NegBLEURT_score', 'score': 0.26007288694381714}] ``` ## Training Details The model is a fine-tuned version of the [bleurt-tiny](https://github.com/google-research/bleurt/tree/master/bleurt/test_checkpoint) checkpoint from the official BLUERT repository. It was fine-tuned on the CANNOT dataset's train split for 500 steps using the [fine-tuning script](https://github.com/google-research/bleurt/blob/master/bleurt/finetune.py) provided by BLEURT. ## Citation [optional] Please cite our INLG 2023 paper, if you use our model. **BibTeX:** tba