tuanluong105 commited on
Commit
ca129fc
1 Parent(s): dc36e21

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +200 -0
README.md ADDED
@@ -0,0 +1,200 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ - fr
5
+ - ro
6
+ - de
7
+ - multilingual
8
+ license: apache-2.0
9
+ library_name: Transformers PHP
10
+ tags:
11
+ - summarization
12
+ - translation
13
+ - onnx
14
+ datasets:
15
+ - c4
16
+ ---
17
+
18
+ https://huggingface.co/google-t5/t5-small with ONNX weights to be compatible with Transformers PHP
19
+
20
+
21
+ # Model Card for T5 Small
22
+
23
+ ![model image](https://camo.githubusercontent.com/623b4dea0b653f2ad3f36c71ebfe749a677ac0a1/68747470733a2f2f6d69726f2e6d656469756d2e636f6d2f6d61782f343030362f312a44304a31674e51663876727255704b657944387750412e706e67)
24
+
25
+ # Table of Contents
26
+
27
+ 1. [Model Details](#model-details)
28
+ 2. [Uses](#uses)
29
+ 3. [Bias, Risks, and Limitations](#bias-risks-and-limitations)
30
+ 4. [Training Details](#training-details)
31
+ 5. [Evaluation](#evaluation)
32
+ 6. [Environmental Impact](#environmental-impact)
33
+ 7. [Citation](#citation)
34
+ 8. [Model Card Authors](#model-card-authors)
35
+ 9. [How To Get Started With the Model](#how-to-get-started-with-the-model)
36
+
37
+ # Model Details
38
+
39
+ ## Model Description
40
+
41
+ The developers of the Text-To-Text Transfer Transformer (T5) [write](https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html):
42
+
43
+ > With T5, we propose reframing all NLP tasks into a unified text-to-text-format where the input and output are always text strings, in contrast to BERT-style models that can only output either a class label or a span of the input. Our text-to-text framework allows us to use the same model, loss function, and hyperparameters on any NLP task.
44
+
45
+ T5-Small is the checkpoint with 60 million parameters.
46
+
47
+ - **Developed by:** Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, Peter J. Liu. See [associated paper](https://jmlr.org/papers/volume21/20-074/20-074.pdf) and [GitHub repo](https://github.com/google-research/text-to-text-transfer-transformer#released-model-checkpoints)
48
+ - **Model type:** Language model
49
+ - **Language(s) (NLP):** English, French, Romanian, German
50
+ - **License:** Apache 2.0
51
+ - **Related Models:** [All T5 Checkpoints](https://huggingface.co/models?search=t5)
52
+ - **Resources for more information:**
53
+ - [Research paper](https://jmlr.org/papers/volume21/20-074/20-074.pdf)
54
+ - [Google's T5 Blog Post](https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html)
55
+ - [GitHub Repo](https://github.com/google-research/text-to-text-transfer-transformer)
56
+ - [Hugging Face T5 Docs](https://huggingface.co/docs/transformers/model_doc/t5)
57
+
58
+ # Uses
59
+
60
+ ## Direct Use and Downstream Use
61
+
62
+ The developers write in a [blog post](https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html) that the model:
63
+
64
+ > Our text-to-text framework allows us to use the same model, loss function, and hyperparameters on any NLP task, including machine translation, document summarization, question answering, and classification tasks (e.g., sentiment analysis). We can even apply T5 to regression tasks by training it to predict the string representation of a number instead of the number itself.
65
+
66
+ See the [blog post](https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html) and [research paper](https://jmlr.org/papers/volume21/20-074/20-074.pdf) for further details.
67
+
68
+ ## Out-of-Scope Use
69
+
70
+ More information needed.
71
+
72
+ # Bias, Risks, and Limitations
73
+
74
+ More information needed.
75
+
76
+ ## Recommendations
77
+
78
+ More information needed.
79
+
80
+ # Training Details
81
+
82
+ ## Training Data
83
+
84
+ The model is pre-trained on the [Colossal Clean Crawled Corpus (C4)](https://www.tensorflow.org/datasets/catalog/c4), which was developed and released in the context of the same [research paper](https://jmlr.org/papers/volume21/20-074/20-074.pdf) as T5.
85
+
86
+ The model was pre-trained on a on a **multi-task mixture of unsupervised (1.) and supervised tasks (2.)**.
87
+ Thereby, the following datasets were being used for (1.) and (2.):
88
+
89
+ 1. **Datasets used for Unsupervised denoising objective**:
90
+
91
+ - [C4](https://huggingface.co/datasets/c4)
92
+ - [Wiki-DPR](https://huggingface.co/datasets/wiki_dpr)
93
+
94
+
95
+ 2. **Datasets used for Supervised text-to-text language modeling objective**
96
+
97
+ - Sentence acceptability judgment
98
+ - CoLA [Warstadt et al., 2018](https://arxiv.org/abs/1805.12471)
99
+ - Sentiment analysis
100
+ - SST-2 [Socher et al., 2013](https://nlp.stanford.edu/~socherr/EMNLP2013_RNTN.pdf)
101
+ - Paraphrasing/sentence similarity
102
+ - MRPC [Dolan and Brockett, 2005](https://aclanthology.org/I05-5002)
103
+ - STS-B [Ceret al., 2017](https://arxiv.org/abs/1708.00055)
104
+ - QQP [Iyer et al., 2017](https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs)
105
+ - Natural language inference
106
+ - MNLI [Williams et al., 2017](https://arxiv.org/abs/1704.05426)
107
+ - QNLI [Rajpurkar et al.,2016](https://arxiv.org/abs/1606.05250)
108
+ - RTE [Dagan et al., 2005](https://link.springer.com/chapter/10.1007/11736790_9)
109
+ - CB [De Marneff et al., 2019](https://semanticsarchive.net/Archive/Tg3ZGI2M/Marneffe.pdf)
110
+ - Sentence completion
111
+ - COPA [Roemmele et al., 2011](https://www.researchgate.net/publication/221251392_Choice_of_Plausible_Alternatives_An_Evaluation_of_Commonsense_Causal_Reasoning)
112
+ - Word sense disambiguation
113
+ - WIC [Pilehvar and Camacho-Collados, 2018](https://arxiv.org/abs/1808.09121)
114
+ - Question answering
115
+ - MultiRC [Khashabi et al., 2018](https://aclanthology.org/N18-1023)
116
+ - ReCoRD [Zhang et al., 2018](https://arxiv.org/abs/1810.12885)
117
+ - BoolQ [Clark et al., 2019](https://arxiv.org/abs/1905.10044)
118
+
119
+ ## Training Procedure
120
+
121
+ In their [abstract](https://jmlr.org/papers/volume21/20-074/20-074.pdf), the model developers write:
122
+
123
+ > In this paper, we explore the landscape of transfer learning techniques for NLP by introducing a unified framework that converts every language problem into a text-to-text format. Our systematic study compares pre-training objectives, architectures, unlabeled datasets, transfer approaches, and other factors on dozens of language understanding tasks.
124
+
125
+ The framework introduced, the T5 framework, involves a training procedure that brings together the approaches studied in the paper. See the [research paper](https://jmlr.org/papers/volume21/20-074/20-074.pdf) for further details.
126
+
127
+ # Evaluation
128
+
129
+ ## Testing Data, Factors & Metrics
130
+
131
+ The developers evaluated the model on 24 tasks, see the [research paper](https://jmlr.org/papers/volume21/20-074/20-074.pdf) for full details.
132
+
133
+ ## Results
134
+
135
+ For full results for T5-small, see the [research paper](https://jmlr.org/papers/volume21/20-074/20-074.pdf), Table 14.
136
+
137
+ # Environmental Impact
138
+
139
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
140
+
141
+ - **Hardware Type:** Google Cloud TPU Pods
142
+ - **Hours used:** More information needed
143
+ - **Cloud Provider:** GCP
144
+ - **Compute Region:** More information needed
145
+ - **Carbon Emitted:** More information needed
146
+
147
+ # Citation
148
+
149
+ **BibTeX:**
150
+
151
+ ```bibtex
152
+ @article{2020t5,
153
+ author = {Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu},
154
+ title = {Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer},
155
+ journal = {Journal of Machine Learning Research},
156
+ year = {2020},
157
+ volume = {21},
158
+ number = {140},
159
+ pages = {1-67},
160
+ url = {http://jmlr.org/papers/v21/20-074.html}
161
+ }
162
+ ```
163
+
164
+ **APA:**
165
+ - Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., Matena, M., ... & Liu, P. J. (2020). Exploring the limits of transfer learning with a unified text-to-text transformer. J. Mach. Learn. Res., 21(140), 1-67.
166
+
167
+ # Model Card Authors
168
+
169
+ This model card was written by the team at Hugging Face.
170
+
171
+ # How to Get Started with the Model
172
+
173
+ Use the code below to get started with the model.
174
+
175
+ <details>
176
+ <summary> Click to expand </summary>
177
+
178
+ ```python
179
+ from transformers import T5Tokenizer, T5Model
180
+
181
+ tokenizer = T5Tokenizer.from_pretrained("t5-small")
182
+ model = T5Model.from_pretrained("t5-small")
183
+
184
+ input_ids = tokenizer(
185
+ "Studies have been shown that owning a dog is good for you", return_tensors="pt"
186
+ ).input_ids # Batch size 1
187
+ decoder_input_ids = tokenizer("Studies show that", return_tensors="pt").input_ids # Batch size 1
188
+
189
+ # forward pass
190
+ outputs = model(input_ids=input_ids, decoder_input_ids=decoder_input_ids)
191
+ last_hidden_states = outputs.last_hidden_state
192
+ ```
193
+
194
+ See the [Hugging Face T5](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5Model) docs and a [Colab Notebook](https://colab.research.google.com/github/google-research/text-to-text-transfer-transformer/blob/main/notebooks/t5-trivia.ipynb) created by the model developers for more examples.
195
+ </details>
196
+
197
+
198
+ ---
199
+
200
+ Note: Having a separate repo for ONNX weights is intended to be a temporary solution until WebML gains more traction. If you would like to make your models web-ready, we recommend converting to ONNX using [🤗 Optimum](https://huggingface.co/docs/optimum/index) and structuring your repo like this one (with ONNX weights located in a subfolder named `onnx`).