--- license: apache-2.0 library_name: peft tags: - generated_from_trainer base_model: TinyLlama/TinyLlama-1.1B-Chat-v0.1 model-index: - name: outputs/qlora-out results: [] --- [Built with Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml adapter: qlora base_model: TinyLlama/TinyLlama-1.1B-Chat-v0.1 bf16: false dataset_prepared_path: null datasets: - ds_tipe: json path: instruct_dataset.jsonl type: alpaca debug: null deepspeed: null early_stopping_patience: null eval_sample_packing: false evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: false learning_rate: 0.0002 load_in_4bit: true load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 32 lora_target_linear: true lora_target_modules: null lr_scheduler: cosine micro_batch_size: 8 model_type: LlamaForCausalLM num_epochs: 4 optimizer: paged_adamw_32bit output_dir: ./outputs/qlora-out pad_to_sequence_len: false resume_from_checkpoint: null sample_packing: false saves_per_epoch: 1 sequence_len: 4096 special_tokens: null strict: false tf32: false tokenizer_type: LlamaTokenizer train_on_inputs: false val_set_size: 0.05 wandb_entity: null wandb_log_model: null wandb_name: null wandb_project: null wandb_watch: null warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ```

# outputs/qlora-out This model is a fine-tuned version of [TinyLlama/TinyLlama-1.1B-Chat-v0.1](https://huggingface.co/TinyLlama/TinyLlama-1.1B-Chat-v0.1) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.1611 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 3.0282 | 0.0336 | 1 | 3.0901 | | 3.0212 | 0.2689 | 8 | 2.9598 | | 2.6598 | 0.5378 | 16 | 2.5892 | | 2.155 | 0.8067 | 24 | 2.2611 | | 2.262 | 1.0756 | 32 | 2.2027 | | 2.1765 | 1.3445 | 40 | 2.1833 | | 2.2249 | 1.6134 | 48 | 2.1740 | | 2.1377 | 1.8824 | 56 | 2.1694 | | 2.0569 | 2.1513 | 64 | 2.1669 | | 2.1184 | 2.4202 | 72 | 2.1637 | | 2.1894 | 2.6891 | 80 | 2.1625 | | 2.2582 | 2.9580 | 88 | 2.1615 | | 2.0791 | 3.2269 | 96 | 2.1612 | | 2.2571 | 3.4958 | 104 | 2.1611 | | 2.177 | 3.7647 | 112 | 2.1611 | ### Framework versions - PEFT 0.11.1 - Transformers 4.41.1 - Pytorch 2.1.2+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1