--- license: apache-2.0 library_name: peft tags: - generated_from_trainer base_model: TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T model-index: - name: outputs/qlora-out results: [] --- [Built with Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml adapter: qlora base_model: TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T bf16: false dataset_prepared_path: null datasets: - path: mhenrichsen/alpaca_2k_test type: alpaca debug: null deepspeed: null early_stopping_patience: null eval_sample_packing: false evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: false learning_rate: 0.0002 load_in_4bit: true load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 32 lora_target_linear: true lora_target_modules: null lr_scheduler: cosine micro_batch_size: 2 model_type: LlamaForCausalLM num_epochs: 4 optimizer: paged_adamw_32bit output_dir: ./outputs/qlora-out pad_to_sequence_len: false resume_from_checkpoint: null sample_packing: false saves_per_epoch: 1 sequence_len: 4096 special_tokens: null strict: false tf32: null tokenizer_type: LlamaTokenizer train_on_inputs: false val_set_size: 0.05 wandb_entity: null wandb_log_model: null wandb_name: null wandb_project: null wandb_watch: null warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ```

# outputs/qlora-out This model is a fine-tuned version of [TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T](https://huggingface.co/TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.2295 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.5605 | 0.0042 | 1 | 1.5265 | | 1.1485 | 0.2526 | 60 | 1.2386 | | 1.1249 | 0.5053 | 120 | 1.2167 | | 1.3675 | 0.7579 | 180 | 1.2130 | | 1.3449 | 1.0105 | 240 | 1.1995 | | 1.1825 | 1.2632 | 300 | 1.2074 | | 0.9782 | 1.5158 | 360 | 1.2060 | | 1.2063 | 1.7684 | 420 | 1.1994 | | 0.9614 | 2.0211 | 480 | 1.1929 | | 1.0084 | 2.2737 | 540 | 1.2140 | | 1.1655 | 2.5263 | 600 | 1.2174 | | 1.1503 | 2.7789 | 660 | 1.2198 | | 0.9577 | 3.0316 | 720 | 1.2164 | | 0.9943 | 3.2842 | 780 | 1.2286 | | 1.0043 | 3.5368 | 840 | 1.2289 | | 1.128 | 3.7895 | 900 | 1.2295 | ### Framework versions - PEFT 0.11.1 - Transformers 4.41.1 - Pytorch 2.1.2+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1