File size: 2,463 Bytes
8e5c24c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
---
library_name: transformers
license: apache-2.0
base_model: mistralai/Mistral-7B-Instruct-v0.2
tags:
- trl
- sft
- generated_from_trainer
model-index:
- name: IE_M2_1000steps_1e8rate_SFT
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# IE_M2_1000steps_1e8rate_SFT

This model is a fine-tuned version of [mistralai/Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.9087

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-08
- train_batch_size: 2
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- training_steps: 1000

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 1.8842        | 0.4   | 50   | 1.9129          |
| 1.9556        | 0.8   | 100  | 1.9129          |
| 2.0184        | 1.2   | 150  | 1.9122          |
| 1.9342        | 1.6   | 200  | 1.9112          |
| 1.9748        | 2.0   | 250  | 1.9101          |
| 2.0075        | 2.4   | 300  | 1.9096          |
| 2.0233        | 2.8   | 350  | 1.9092          |
| 1.9096        | 3.2   | 400  | 1.9090          |
| 2.0202        | 3.6   | 450  | 1.9091          |
| 1.9009        | 4.0   | 500  | 1.9094          |
| 2.0555        | 4.4   | 550  | 1.9096          |
| 1.9723        | 4.8   | 600  | 1.9090          |
| 1.9996        | 5.2   | 650  | 1.9088          |
| 1.9609        | 5.6   | 700  | 1.9091          |
| 1.8893        | 6.0   | 750  | 1.9090          |
| 2.0061        | 6.4   | 800  | 1.9088          |
| 1.9079        | 6.8   | 850  | 1.9087          |
| 1.9566        | 7.2   | 900  | 1.9087          |
| 1.9496        | 7.6   | 950  | 1.9087          |
| 1.9817        | 8.0   | 1000 | 1.9087          |


### Framework versions

- Transformers 4.44.2
- Pytorch 2.0.0+cu117
- Datasets 3.0.0
- Tokenizers 0.19.1