trbeers commited on
Commit
a840b09
1 Parent(s): bca0593

Add new SentenceTransformer model.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,513 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ library_name: sentence-transformers
5
+ tags:
6
+ - sentence-transformers
7
+ - sentence-similarity
8
+ - feature-extraction
9
+ - generated_from_trainer
10
+ - dataset_size:3000
11
+ - loss:MultipleNegativesRankingLoss
12
+ base_model: distilbert/distilroberta-base
13
+ datasets:
14
+ - sentence-transformers/all-nli
15
+ metrics:
16
+ - pearson_cosine
17
+ - spearman_cosine
18
+ - pearson_manhattan
19
+ - spearman_manhattan
20
+ - pearson_euclidean
21
+ - spearman_euclidean
22
+ - pearson_dot
23
+ - spearman_dot
24
+ - pearson_max
25
+ - spearman_max
26
+ widget:
27
+ - source_sentence: An Indian woman is washing and cleaning dirty laundry at a lake
28
+ and in the background is a kid who appears to have jumped into the lake.
29
+ sentences:
30
+ - An Indian woman is doing her laundry in a lake.
31
+ - An Indian woman is putting her laundry into the machine.
32
+ - A girl is playing with a Slinky.
33
+ - source_sentence: Nine women in white robes with hoods walk on plush, green grass.
34
+ sentences:
35
+ - The women each have one head.
36
+ - Two friends sitting on step at their job.
37
+ - The woman is alone and asleep in her bedroom.
38
+ - source_sentence: Under a blue sky with white clouds, a child reaches up to touch
39
+ the propeller of a plane standing parked on a field of grass.
40
+ sentences:
41
+ - A child is reaching to touch the propeller of a plane.
42
+ - The boy is sitting
43
+ - A child is playing with a ball.
44
+ - source_sentence: A man and a woman are talking in a park
45
+ sentences:
46
+ - A man is heading to his house of worship.
47
+ - A pair of people are talking outdoors.
48
+ - A man and woman are talking in the aquarium.
49
+ - source_sentence: A man running a marathon talks to his friend.
50
+ sentences:
51
+ - People watching hot air balloons inflating.
52
+ - There is a man running.
53
+ - There are people canoeing down a river.
54
+ pipeline_tag: sentence-similarity
55
+ model-index:
56
+ - name: SentenceTransformer based on distilbert/distilroberta-base
57
+ results:
58
+ - task:
59
+ type: semantic-similarity
60
+ name: Semantic Similarity
61
+ dataset:
62
+ name: sts dev
63
+ type: sts-dev
64
+ metrics:
65
+ - type: pearson_cosine
66
+ value: 0.7444932434233196
67
+ name: Pearson Cosine
68
+ - type: spearman_cosine
69
+ value: 0.7769282355085634
70
+ name: Spearman Cosine
71
+ - type: pearson_manhattan
72
+ value: 0.7502489213535852
73
+ name: Pearson Manhattan
74
+ - type: spearman_manhattan
75
+ value: 0.7574428535049513
76
+ name: Spearman Manhattan
77
+ - type: pearson_euclidean
78
+ value: 0.752089041601621
79
+ name: Pearson Euclidean
80
+ - type: spearman_euclidean
81
+ value: 0.7583983155030144
82
+ name: Spearman Euclidean
83
+ - type: pearson_dot
84
+ value: 0.49365896310259416
85
+ name: Pearson Dot
86
+ - type: spearman_dot
87
+ value: 0.49513705166832495
88
+ name: Spearman Dot
89
+ - type: pearson_max
90
+ value: 0.752089041601621
91
+ name: Pearson Max
92
+ - type: spearman_max
93
+ value: 0.7769282355085634
94
+ name: Spearman Max
95
+ - task:
96
+ type: semantic-similarity
97
+ name: Semantic Similarity
98
+ dataset:
99
+ name: sts test
100
+ type: sts-test
101
+ metrics:
102
+ - type: pearson_cosine
103
+ value: 0.7101248020205797
104
+ name: Pearson Cosine
105
+ - type: spearman_cosine
106
+ value: 0.7072744861979087
107
+ name: Spearman Cosine
108
+ - type: pearson_manhattan
109
+ value: 0.7133109440593921
110
+ name: Pearson Manhattan
111
+ - type: spearman_manhattan
112
+ value: 0.6966728374126535
113
+ name: Spearman Manhattan
114
+ - type: pearson_euclidean
115
+ value: 0.7142547715068376
116
+ name: Pearson Euclidean
117
+ - type: spearman_euclidean
118
+ value: 0.6959833440145297
119
+ name: Spearman Euclidean
120
+ - type: pearson_dot
121
+ value: 0.4503698330540162
122
+ name: Pearson Dot
123
+ - type: spearman_dot
124
+ value: 0.43425556993054526
125
+ name: Spearman Dot
126
+ - type: pearson_max
127
+ value: 0.7142547715068376
128
+ name: Pearson Max
129
+ - type: spearman_max
130
+ value: 0.7072744861979087
131
+ name: Spearman Max
132
+ ---
133
+
134
+ # SentenceTransformer based on distilbert/distilroberta-base
135
+
136
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [distilbert/distilroberta-base](https://huggingface.co/distilbert/distilroberta-base) on the [sentence-transformers/all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
137
+
138
+ ## Model Details
139
+
140
+ ### Model Description
141
+ - **Model Type:** Sentence Transformer
142
+ - **Base model:** [distilbert/distilroberta-base](https://huggingface.co/distilbert/distilroberta-base) <!-- at revision fb53ab8802853c8e4fbdbcd0529f21fc6f459b2b -->
143
+ - **Maximum Sequence Length:** 512 tokens
144
+ - **Output Dimensionality:** 768 tokens
145
+ - **Similarity Function:** Cosine Similarity
146
+ - **Training Dataset:**
147
+ - [sentence-transformers/all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli)
148
+ - **Language:** en
149
+ <!-- - **License:** Unknown -->
150
+
151
+ ### Model Sources
152
+
153
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
154
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
155
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
156
+
157
+ ### Full Model Architecture
158
+
159
+ ```
160
+ SentenceTransformer(
161
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: RobertaModel
162
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
163
+ )
164
+ ```
165
+
166
+ ## Usage
167
+
168
+ ### Direct Usage (Sentence Transformers)
169
+
170
+ First install the Sentence Transformers library:
171
+
172
+ ```bash
173
+ pip install -U sentence-transformers
174
+ ```
175
+
176
+ Then you can load this model and run inference.
177
+ ```python
178
+ from sentence_transformers import SentenceTransformer
179
+
180
+ # Download from the 🤗 Hub
181
+ model = SentenceTransformer("trbeers/distilroberta-base-nli-v2")
182
+ # Run inference
183
+ sentences = [
184
+ 'A man running a marathon talks to his friend.',
185
+ 'There is a man running.',
186
+ 'There are people canoeing down a river.',
187
+ ]
188
+ embeddings = model.encode(sentences)
189
+ print(embeddings.shape)
190
+ # [3, 768]
191
+
192
+ # Get the similarity scores for the embeddings
193
+ similarities = model.similarity(embeddings, embeddings)
194
+ print(similarities.shape)
195
+ # [3, 3]
196
+ ```
197
+
198
+ <!--
199
+ ### Direct Usage (Transformers)
200
+
201
+ <details><summary>Click to see the direct usage in Transformers</summary>
202
+
203
+ </details>
204
+ -->
205
+
206
+ <!--
207
+ ### Downstream Usage (Sentence Transformers)
208
+
209
+ You can finetune this model on your own dataset.
210
+
211
+ <details><summary>Click to expand</summary>
212
+
213
+ </details>
214
+ -->
215
+
216
+ <!--
217
+ ### Out-of-Scope Use
218
+
219
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
220
+ -->
221
+
222
+ ## Evaluation
223
+
224
+ ### Metrics
225
+
226
+ #### Semantic Similarity
227
+ * Dataset: `sts-dev`
228
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
229
+
230
+ | Metric | Value |
231
+ |:--------------------|:-----------|
232
+ | pearson_cosine | 0.7445 |
233
+ | **spearman_cosine** | **0.7769** |
234
+ | pearson_manhattan | 0.7502 |
235
+ | spearman_manhattan | 0.7574 |
236
+ | pearson_euclidean | 0.7521 |
237
+ | spearman_euclidean | 0.7584 |
238
+ | pearson_dot | 0.4937 |
239
+ | spearman_dot | 0.4951 |
240
+ | pearson_max | 0.7521 |
241
+ | spearman_max | 0.7769 |
242
+
243
+ #### Semantic Similarity
244
+ * Dataset: `sts-test`
245
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
246
+
247
+ | Metric | Value |
248
+ |:--------------------|:-----------|
249
+ | pearson_cosine | 0.7101 |
250
+ | **spearman_cosine** | **0.7073** |
251
+ | pearson_manhattan | 0.7133 |
252
+ | spearman_manhattan | 0.6967 |
253
+ | pearson_euclidean | 0.7143 |
254
+ | spearman_euclidean | 0.696 |
255
+ | pearson_dot | 0.4504 |
256
+ | spearman_dot | 0.4343 |
257
+ | pearson_max | 0.7143 |
258
+ | spearman_max | 0.7073 |
259
+
260
+ <!--
261
+ ## Bias, Risks and Limitations
262
+
263
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
264
+ -->
265
+
266
+ <!--
267
+ ### Recommendations
268
+
269
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
270
+ -->
271
+
272
+ ## Training Details
273
+
274
+ ### Training Dataset
275
+
276
+ #### sentence-transformers/all-nli
277
+
278
+ * Dataset: [sentence-transformers/all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) at [d482672](https://huggingface.co/datasets/sentence-transformers/all-nli/tree/d482672c8e74ce18da116f430137434ba2e52fab)
279
+ * Size: 3,000 training samples
280
+ * Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
281
+ * Approximate statistics based on the first 1000 samples:
282
+ | | anchor | positive | negative |
283
+ |:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
284
+ | type | string | string | string |
285
+ | details | <ul><li>min: 7 tokens</li><li>mean: 10.38 tokens</li><li>max: 45 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 12.8 tokens</li><li>max: 39 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 13.4 tokens</li><li>max: 50 tokens</li></ul> |
286
+ * Samples:
287
+ | anchor | positive | negative |
288
+ |:---------------------------------------------------------------------------|:-------------------------------------------------|:-----------------------------------------------------------|
289
+ | <code>A person on a horse jumps over a broken down airplane.</code> | <code>A person is outdoors, on a horse.</code> | <code>A person is at a diner, ordering an omelette.</code> |
290
+ | <code>Children smiling and waving at camera</code> | <code>There are children present</code> | <code>The kids are frowning</code> |
291
+ | <code>A boy is jumping on skateboard in the middle of a red bridge.</code> | <code>The boy does a skateboarding trick.</code> | <code>The boy skates down the sidewalk.</code> |
292
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
293
+ ```json
294
+ {
295
+ "scale": 20.0,
296
+ "similarity_fct": "cos_sim"
297
+ }
298
+ ```
299
+
300
+ ### Evaluation Dataset
301
+
302
+ #### sentence-transformers/all-nli
303
+
304
+ * Dataset: [sentence-transformers/all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) at [d482672](https://huggingface.co/datasets/sentence-transformers/all-nli/tree/d482672c8e74ce18da116f430137434ba2e52fab)
305
+ * Size: 300 evaluation samples
306
+ * Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
307
+ * Approximate statistics based on the first 1000 samples:
308
+ | | anchor | positive | negative |
309
+ |:--------|:----------------------------------------------------------------------------------|:--------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
310
+ | type | string | string | string |
311
+ | details | <ul><li>min: 6 tokens</li><li>mean: 18.06 tokens</li><li>max: 53 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 9.8 tokens</li><li>max: 28 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 10.44 tokens</li><li>max: 29 tokens</li></ul> |
312
+ * Samples:
313
+ | anchor | positive | negative |
314
+ |:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------|:--------------------------------------------------------|
315
+ | <code>Two women are embracing while holding to go packages.</code> | <code>Two woman are holding packages.</code> | <code>The men are fighting outside a deli.</code> |
316
+ | <code>Two young children in blue jerseys, one with the number 9 and one with the number 2 are standing on wooden steps in a bathroom and washing their hands in a sink.</code> | <code>Two kids in numbered jerseys wash their hands.</code> | <code>Two kids in jackets walk to school.</code> |
317
+ | <code>A man selling donuts to a customer during a world exhibition event held in the city of Angeles</code> | <code>A man selling donuts to a customer.</code> | <code>A woman drinks her coffee in a small cafe.</code> |
318
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
319
+ ```json
320
+ {
321
+ "scale": 20.0,
322
+ "similarity_fct": "cos_sim"
323
+ }
324
+ ```
325
+
326
+ ### Training Hyperparameters
327
+ #### Non-Default Hyperparameters
328
+
329
+ - `eval_strategy`: steps
330
+ - `per_device_train_batch_size`: 128
331
+ - `per_device_eval_batch_size`: 128
332
+ - `num_train_epochs`: 1
333
+ - `warmup_ratio`: 0.1
334
+ - `batch_sampler`: no_duplicates
335
+
336
+ #### All Hyperparameters
337
+ <details><summary>Click to expand</summary>
338
+
339
+ - `overwrite_output_dir`: False
340
+ - `do_predict`: False
341
+ - `eval_strategy`: steps
342
+ - `prediction_loss_only`: True
343
+ - `per_device_train_batch_size`: 128
344
+ - `per_device_eval_batch_size`: 128
345
+ - `per_gpu_train_batch_size`: None
346
+ - `per_gpu_eval_batch_size`: None
347
+ - `gradient_accumulation_steps`: 1
348
+ - `eval_accumulation_steps`: None
349
+ - `learning_rate`: 5e-05
350
+ - `weight_decay`: 0.0
351
+ - `adam_beta1`: 0.9
352
+ - `adam_beta2`: 0.999
353
+ - `adam_epsilon`: 1e-08
354
+ - `max_grad_norm`: 1.0
355
+ - `num_train_epochs`: 1
356
+ - `max_steps`: -1
357
+ - `lr_scheduler_type`: linear
358
+ - `lr_scheduler_kwargs`: {}
359
+ - `warmup_ratio`: 0.1
360
+ - `warmup_steps`: 0
361
+ - `log_level`: passive
362
+ - `log_level_replica`: warning
363
+ - `log_on_each_node`: True
364
+ - `logging_nan_inf_filter`: True
365
+ - `save_safetensors`: True
366
+ - `save_on_each_node`: False
367
+ - `save_only_model`: False
368
+ - `restore_callback_states_from_checkpoint`: False
369
+ - `no_cuda`: False
370
+ - `use_cpu`: False
371
+ - `use_mps_device`: False
372
+ - `seed`: 42
373
+ - `data_seed`: None
374
+ - `jit_mode_eval`: False
375
+ - `use_ipex`: False
376
+ - `bf16`: False
377
+ - `fp16`: False
378
+ - `fp16_opt_level`: O1
379
+ - `half_precision_backend`: auto
380
+ - `bf16_full_eval`: False
381
+ - `fp16_full_eval`: False
382
+ - `tf32`: None
383
+ - `local_rank`: 0
384
+ - `ddp_backend`: None
385
+ - `tpu_num_cores`: None
386
+ - `tpu_metrics_debug`: False
387
+ - `debug`: []
388
+ - `dataloader_drop_last`: False
389
+ - `dataloader_num_workers`: 0
390
+ - `dataloader_prefetch_factor`: None
391
+ - `past_index`: -1
392
+ - `disable_tqdm`: False
393
+ - `remove_unused_columns`: True
394
+ - `label_names`: None
395
+ - `load_best_model_at_end`: False
396
+ - `ignore_data_skip`: False
397
+ - `fsdp`: []
398
+ - `fsdp_min_num_params`: 0
399
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
400
+ - `fsdp_transformer_layer_cls_to_wrap`: None
401
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
402
+ - `deepspeed`: None
403
+ - `label_smoothing_factor`: 0.0
404
+ - `optim`: adamw_torch
405
+ - `optim_args`: None
406
+ - `adafactor`: False
407
+ - `group_by_length`: False
408
+ - `length_column_name`: length
409
+ - `ddp_find_unused_parameters`: None
410
+ - `ddp_bucket_cap_mb`: None
411
+ - `ddp_broadcast_buffers`: False
412
+ - `dataloader_pin_memory`: True
413
+ - `dataloader_persistent_workers`: False
414
+ - `skip_memory_metrics`: True
415
+ - `use_legacy_prediction_loop`: False
416
+ - `push_to_hub`: False
417
+ - `resume_from_checkpoint`: None
418
+ - `hub_model_id`: None
419
+ - `hub_strategy`: every_save
420
+ - `hub_private_repo`: False
421
+ - `hub_always_push`: False
422
+ - `gradient_checkpointing`: False
423
+ - `gradient_checkpointing_kwargs`: None
424
+ - `include_inputs_for_metrics`: False
425
+ - `eval_do_concat_batches`: True
426
+ - `fp16_backend`: auto
427
+ - `push_to_hub_model_id`: None
428
+ - `push_to_hub_organization`: None
429
+ - `mp_parameters`:
430
+ - `auto_find_batch_size`: False
431
+ - `full_determinism`: False
432
+ - `torchdynamo`: None
433
+ - `ray_scope`: last
434
+ - `ddp_timeout`: 1800
435
+ - `torch_compile`: False
436
+ - `torch_compile_backend`: None
437
+ - `torch_compile_mode`: None
438
+ - `dispatch_batches`: None
439
+ - `split_batches`: None
440
+ - `include_tokens_per_second`: False
441
+ - `include_num_input_tokens_seen`: False
442
+ - `neftune_noise_alpha`: None
443
+ - `optim_target_modules`: None
444
+ - `batch_eval_metrics`: False
445
+ - `batch_sampler`: no_duplicates
446
+ - `multi_dataset_batch_sampler`: proportional
447
+
448
+ </details>
449
+
450
+ ### Training Logs
451
+ | Epoch | Step | loss | sts-dev_spearman_cosine | sts-test_spearman_cosine |
452
+ |:------:|:----:|:------:|:-----------------------:|:------------------------:|
453
+ | 0 | 0 | - | 0.6375 | - |
454
+ | 0.4167 | 10 | 2.2687 | 0.7713 | - |
455
+ | 0.8333 | 20 | 1.8101 | 0.7769 | - |
456
+ | 1.0 | 24 | - | - | 0.7073 |
457
+
458
+
459
+ ### Framework Versions
460
+ - Python: 3.10.11
461
+ - Sentence Transformers: 3.0.1
462
+ - Transformers: 4.41.2
463
+ - PyTorch: 2.3.1
464
+ - Accelerate: 0.31.0
465
+ - Datasets: 2.19.1
466
+ - Tokenizers: 0.19.1
467
+
468
+ ## Citation
469
+
470
+ ### BibTeX
471
+
472
+ #### Sentence Transformers
473
+ ```bibtex
474
+ @inproceedings{reimers-2019-sentence-bert,
475
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
476
+ author = "Reimers, Nils and Gurevych, Iryna",
477
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
478
+ month = "11",
479
+ year = "2019",
480
+ publisher = "Association for Computational Linguistics",
481
+ url = "https://arxiv.org/abs/1908.10084",
482
+ }
483
+ ```
484
+
485
+ #### MultipleNegativesRankingLoss
486
+ ```bibtex
487
+ @misc{henderson2017efficient,
488
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
489
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
490
+ year={2017},
491
+ eprint={1705.00652},
492
+ archivePrefix={arXiv},
493
+ primaryClass={cs.CL}
494
+ }
495
+ ```
496
+
497
+ <!--
498
+ ## Glossary
499
+
500
+ *Clearly define terms in order to be accessible across audiences.*
501
+ -->
502
+
503
+ <!--
504
+ ## Model Card Authors
505
+
506
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
507
+ -->
508
+
509
+ <!--
510
+ ## Model Card Contact
511
+
512
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
513
+ -->
config.json ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "distilroberta-base",
3
+ "architectures": [
4
+ "RobertaModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "hidden_act": "gelu",
11
+ "hidden_dropout_prob": 0.1,
12
+ "hidden_size": 768,
13
+ "initializer_range": 0.02,
14
+ "intermediate_size": 3072,
15
+ "layer_norm_eps": 1e-05,
16
+ "max_position_embeddings": 514,
17
+ "model_type": "roberta",
18
+ "num_attention_heads": 12,
19
+ "num_hidden_layers": 6,
20
+ "pad_token_id": 1,
21
+ "position_embedding_type": "absolute",
22
+ "torch_dtype": "float32",
23
+ "transformers_version": "4.41.2",
24
+ "type_vocab_size": 1,
25
+ "use_cache": true,
26
+ "vocab_size": 50265
27
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.1",
4
+ "transformers": "4.41.2",
5
+ "pytorch": "2.3.1"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2d04664076a05862c67966c6d1b5a65a62002316b266dd1c610cae5c605d4532
3
+ size 328485128
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": "<s>",
3
+ "cls_token": "<s>",
4
+ "eos_token": "</s>",
5
+ "mask_token": {
6
+ "content": "<mask>",
7
+ "lstrip": true,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false
11
+ },
12
+ "pad_token": "<pad>",
13
+ "sep_token": "</s>",
14
+ "unk_token": "<unk>"
15
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": false,
3
+ "added_tokens_decoder": {
4
+ "0": {
5
+ "content": "<s>",
6
+ "lstrip": false,
7
+ "normalized": true,
8
+ "rstrip": false,
9
+ "single_word": false,
10
+ "special": true
11
+ },
12
+ "1": {
13
+ "content": "<pad>",
14
+ "lstrip": false,
15
+ "normalized": true,
16
+ "rstrip": false,
17
+ "single_word": false,
18
+ "special": true
19
+ },
20
+ "2": {
21
+ "content": "</s>",
22
+ "lstrip": false,
23
+ "normalized": true,
24
+ "rstrip": false,
25
+ "single_word": false,
26
+ "special": true
27
+ },
28
+ "3": {
29
+ "content": "<unk>",
30
+ "lstrip": false,
31
+ "normalized": true,
32
+ "rstrip": false,
33
+ "single_word": false,
34
+ "special": true
35
+ },
36
+ "50264": {
37
+ "content": "<mask>",
38
+ "lstrip": true,
39
+ "normalized": false,
40
+ "rstrip": false,
41
+ "single_word": false,
42
+ "special": true
43
+ }
44
+ },
45
+ "bos_token": "<s>",
46
+ "clean_up_tokenization_spaces": true,
47
+ "cls_token": "<s>",
48
+ "eos_token": "</s>",
49
+ "errors": "replace",
50
+ "mask_token": "<mask>",
51
+ "model_max_length": 512,
52
+ "pad_token": "<pad>",
53
+ "sep_token": "</s>",
54
+ "tokenizer_class": "RobertaTokenizer",
55
+ "trim_offsets": true,
56
+ "unk_token": "<unk>"
57
+ }
vocab.json ADDED
The diff for this file is too large to render. See raw diff