transmogrifier's picture
Upload cfg.yaml
2fb1f92
raw
history blame
3.26 kB
architecture:
backbone_dtype: int8
force_embedding_gradients: true
gradient_checkpointing: true
intermediate_dropout: 0.0
pretrained: true
pretrained_weights: /media/akshay/datasets/largeModels/llms/h2o/h2o-llmstudio/output/user/economic-ferret.1/checkpoint.pth
augmentation:
random_parent_probability: 0.5
skip_parent_probability: 0.0
token_mask_probability: 0.0
dataset:
add_eos_token_to_answer: true
add_eos_token_to_prompt: true
add_eos_token_to_system: true
answer_column: response
chatbot_author: H2O.ai
chatbot_name: h2oGPT
data_sample: 1.0
data_sample_choice:
- Train
- Validation
limit_chained_samples: false
mask_prompt_labels: true
parent_id_column: None
personalize: false
prompt_column:
- instruction
system_column: None
text_answer_separator: <|answer|>
text_prompt_start: <|prompt|>
text_system_start: <|system|>
train_dataframe: /media/akshay/datasets/largeModels/llms/h2o/h2o-llmstudio/data/user/PR-singleQA-July13/singleQA.csv
validation_dataframe: None
validation_size: 0.01
validation_strategy: automatic
environment:
compile_model: false
find_unused_parameters: false
gpus:
- '0'
huggingface_branch: main
mixed_precision: true
number_of_workers: 8
seed: -1
trust_remote_code: true
use_fsdp: false
experiment_name: economic-ferret.1.1
llm_backbone: tiiuae/falcon-7b
logging:
logger: None
neptune_project: ''
number_of_texts: 10
output_directory: /media/akshay/datasets/largeModels/llms/h2o/h2o-llmstudio/output/user/economic-ferret.1.1/
prediction:
batch_size_inference: 0
do_sample: false
max_length_inference: 256
metric: BLEU
metric_gpt_model: gpt-3.5-turbo-0301
min_length_inference: 2
num_beams: 1
num_history: 4
repetition_penalty: 1.2
stop_tokens: ''
temperature: 0.3
top_k: 0
top_p: 1.0
problem_type: text_causal_language_modeling
tokenizer:
add_prefix_space: false
add_prompt_answer_tokens: false
max_length: 1760
max_length_answer: 512
max_length_prompt: 1024
padding_quantile: 1.0
use_fast: true
training:
adaptive_kl_control: true
advantages_gamma: 0.99
advantages_lambda: 0.95
batch_size: 2
differential_learning_rate: 1.0e-05
differential_learning_rate_layers: []
drop_last_batch: true
epochs: 3
evaluate_before_training: true
evaluation_epochs: 1.0
grad_accumulation: 4
gradient_clip: 0.9
initial_kl_coefficient: 0.2
kl_horizon: 10000
kl_target: 6.0
learning_rate: 0.0001
lora: true
lora_alpha: 16
lora_dropout: 0.05
lora_r: 8
lora_target_modules: query_key_value, dense, dense_h_to_4h, dense_4h_to_h
loss_function: TokenAveragedCrossEntropy
offload_reward_model: false
optimizer: AdamW
ppo_batch_size: 1
ppo_clip_policy: 0.2
ppo_clip_value: 0.2
ppo_epochs: 4
ppo_generate_temperature: 1.0
reward_model: OpenAssistant/reward-model-deberta-v3-large-v2
save_best_checkpoint: false
scaling_factor_value_loss: 0.1
schedule: Cosine
train_validation_data: true
use_rlhf: false
warmup_epochs: 0.0
weight_decay: 0.0