--- license: cc-by-nc-sa-4.0 datasets: - traintogpb/aihub-flores-koen-integrated-sparta-base-300k language: - en - ko metrics: - sacrebleu - xcomet pipeline_tag: translation tags: - translation - text-generation - ko2en - en2ko --- ### Pretrained LM - [beomi/Llama-3-Open-Ko-8B](https://huggingface.co/beomi/Llama-3-Open-Ko-8B) (MIT License) ### Training Dataset - [traintogpb/aihub-flores-koen-integrated-prime-base-300k](https://huggingface.co/datasets/traintogpb/aihub-flores-koen-integrated-prime-base-300k) - Can translate in Enlgish-Korean (bi-directional) ### Prompt - Template: ```python prompt = f"Translate this from {src_lang} to {tgt_lang}\n### {src_lang}: {src_text}\n### {tgt_lang}:" >>> # src_lang can be 'English', '한국어' >>> # tgt_lang can be '한국어', 'English' ``` Mind that there is no "space (`_`)" at the end of the prompt (unpredictable first token will be popped up). ### Training - Trained with QLoRA - PLM: NormalFloat 4-bit - Adapter: BrainFloat 16-bit - Adapted to all the linear layers (around 2.05%) - Merge adapters and upscaled in BrainFloat 16-bit precision ### Usage (IMPORTANT) - Should remove the EOS token (`<|end_of_text|>`, id=128001) at the end of the prompt. ```python # MODEL model_name = 'traintogpb/llama-3-enko-translator-8b-qlora-bf16-upscaled' model = AutoModelForCausalLM.from_pretrained( model_name, max_length=768, attn_implementation='flash_attention_2', torch_dtype=torch.bfloat16, ) tokenizer = AutoTokenizer.from_pretrained(adapter_name) tokenizer.pad_token_id = 128002 # eos_token_id and pad_token_id should be different # tokenizer.add_eos_token = False # There is no 'add_eos_token' option in llama3 text = "Someday, QWER will be the greatest girl band in the world." input_prompt = f"Translate this from English to 한국어.\n### English: {text}\n### 한국어:" inputs = tokenizer(input_prompt, max_length=768, truncation=True, return_tensors='pt') if inputs['input_ids'][0][-1] == tokenizer.eos_token_id: inputs['input_ids'] = inputs['input_ids'][0][:-1].unsqueeze(dim=0) inputs['attention_mask'] = inputs['attention_mask'][0][:-1].unsqueeze(dim=0) outputs = model.generate(**inputs, max_length=768, eos_token_id=tokenizer.eos_token_id) input_len = len(inputs['input_ids'].squeeze()) translation = tokenizer.decode(outputs[0][input_len:], skip_special_tokens=True) print(translation) ``` ### Framework versions - PEFT 0.8.2