Upload folder using huggingface_hub
Browse files- .gitattributes +2 -0
- added_tokens.json +3 -0
- cached_dev_deberta-mlm_128_atomic +3 -0
- cached_train_deberta-mlm_128_atomic +3 -0
- config.json +36 -0
- data_utils.py +236 -0
- eval_results.txt +1 -0
- logits_test.txt +120 -0
- pytorch_model.bin +3 -0
- run_pretrain.py +659 -0
- runs/events.out.tfevents.1696030376.car-2i-100k-name-seed101-5e-6-0-0.28.0 +3 -0
- special_tokens_map.json +9 -0
- spm.model +3 -0
- tokenizer_config.json +16 -0
- train.log +878 -0
- training_args.bin +3 -0
.gitattributes
CHANGED
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
cached_dev_deberta-mlm_128_atomic filter=lfs diff=lfs merge=lfs -text
|
37 |
+
cached_train_deberta-mlm_128_atomic filter=lfs diff=lfs merge=lfs -text
|
added_tokens.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"[MASK]": 128000
|
3 |
+
}
|
cached_dev_deberta-mlm_128_atomic
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bcf7fda43dc4a34e0720d4dd64075cc48c2ae0002fad2806cdbe2811a0d3bd3c
|
3 |
+
size 4451683
|
cached_train_deberta-mlm_128_atomic
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4ff1dec300b58614baae2c3c18eb9d908a8f99cf338c042fb0b5eebb65ca833d
|
3 |
+
size 334716007
|
config.json
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "microsoft/deberta-v3-large",
|
3 |
+
"architectures": [
|
4 |
+
"DebertaV2ForMaskedLM"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"finetuning_task": "atomic",
|
8 |
+
"hidden_act": "gelu",
|
9 |
+
"hidden_dropout_prob": 0.1,
|
10 |
+
"hidden_size": 1024,
|
11 |
+
"initializer_range": 0.02,
|
12 |
+
"intermediate_size": 4096,
|
13 |
+
"layer_norm_eps": 1e-07,
|
14 |
+
"max_position_embeddings": 512,
|
15 |
+
"max_relative_positions": -1,
|
16 |
+
"model_type": "deberta-v2",
|
17 |
+
"norm_rel_ebd": "layer_norm",
|
18 |
+
"num_attention_heads": 16,
|
19 |
+
"num_hidden_layers": 24,
|
20 |
+
"pad_token_id": 0,
|
21 |
+
"pooler_dropout": 0,
|
22 |
+
"pooler_hidden_act": "gelu",
|
23 |
+
"pooler_hidden_size": 1024,
|
24 |
+
"pos_att_type": [
|
25 |
+
"p2c",
|
26 |
+
"c2p"
|
27 |
+
],
|
28 |
+
"position_biased_input": false,
|
29 |
+
"position_buckets": 256,
|
30 |
+
"relative_attention": true,
|
31 |
+
"share_att_key": true,
|
32 |
+
"torch_dtype": "float32",
|
33 |
+
"transformers_version": "4.31.0",
|
34 |
+
"type_vocab_size": 0,
|
35 |
+
"vocab_size": 128100
|
36 |
+
}
|
data_utils.py
ADDED
@@ -0,0 +1,236 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import logging
|
3 |
+
|
4 |
+
import nltk
|
5 |
+
from nltk.corpus import stopwords
|
6 |
+
from tqdm import tqdm
|
7 |
+
from tqdm import tqdm
|
8 |
+
|
9 |
+
skip_words = set(stopwords.words('english'))
|
10 |
+
skip_words.add('\'s')
|
11 |
+
skip_words.add('.')
|
12 |
+
skip_words.add(',')
|
13 |
+
PERSON_NAMES = ['Alex', 'Ash', 'Aspen', 'Bali', 'Berkeley', 'Cameron', 'Chris', 'Cody', 'Dana', 'Drew', 'Emory',
|
14 |
+
'Flynn', 'Gale', 'Jamie', 'Jesse',
|
15 |
+
'Kai', 'Kendall', 'Kyle', 'Lee', 'Logan', 'Max', 'Morgan', 'Nico', 'Paris', 'Pat', 'Quinn', 'Ray',
|
16 |
+
'Robin', 'Rowan', 'Rudy', 'Sam', 'Skylar', 'Sydney',
|
17 |
+
'Taylor', 'Tracy', 'West', 'Wynne']
|
18 |
+
logger = logging.getLogger(__name__)
|
19 |
+
|
20 |
+
|
21 |
+
def accuracy(out, labels):
|
22 |
+
return {'acc': (out == labels).mean()}
|
23 |
+
|
24 |
+
|
25 |
+
def handle_words(span, tokenizer, keywords=None, is_start=False):
|
26 |
+
inputs = []
|
27 |
+
labels = []
|
28 |
+
words = nltk.word_tokenize(span)
|
29 |
+
for w_i, w in enumerate(words):
|
30 |
+
if (w_i == 0 and is_start) or w == '.' or w == ',' or w.startswith('\''):
|
31 |
+
w_bpes = tokenizer.tokenize(w)
|
32 |
+
else:
|
33 |
+
w_bpes = tokenizer.tokenize(w, add_prefix_space=True)
|
34 |
+
inputs.extend(w_bpes)
|
35 |
+
if keywords != None:
|
36 |
+
if w in keywords:
|
37 |
+
labels.extend(w_bpes)
|
38 |
+
else:
|
39 |
+
labels.extend([-100] * len(w_bpes))
|
40 |
+
else:
|
41 |
+
if w not in PERSON_NAMES and w not in skip_words and w.lower() not in skip_words:
|
42 |
+
labels.extend(w_bpes)
|
43 |
+
else:
|
44 |
+
labels.extend([-100] * len(w_bpes))
|
45 |
+
return inputs, labels
|
46 |
+
|
47 |
+
|
48 |
+
def handle_underscores(suffix, tokenizer, keywords=None, prefix=False):
|
49 |
+
inputs = []
|
50 |
+
labels = []
|
51 |
+
if '_' in suffix:
|
52 |
+
suffix_parts = [i.strip() for i in suffix.split('___')]
|
53 |
+
for i, part in enumerate(suffix_parts):
|
54 |
+
if part:
|
55 |
+
tmp_inputs, tmp_labels = handle_words(part, tokenizer, keywords=keywords, is_start=(i == 0 and prefix))
|
56 |
+
inputs += tmp_inputs
|
57 |
+
labels += tmp_labels
|
58 |
+
|
59 |
+
if i != len(suffix_parts) - 1 and suffix_parts[i + 1]:
|
60 |
+
inputs.append(tokenizer.mask_token)
|
61 |
+
labels.append(-100)
|
62 |
+
else:
|
63 |
+
inputs.append(tokenizer.mask_token)
|
64 |
+
labels.append(-100)
|
65 |
+
else:
|
66 |
+
inputs, labels = handle_words(suffix, tokenizer, keywords=keywords, is_start=prefix)
|
67 |
+
return inputs, labels
|
68 |
+
|
69 |
+
from tqdm import tqdm
|
70 |
+
def convert_examples_to_features(examples, tokenizer, max_length=512):
|
71 |
+
data = []
|
72 |
+
for example in tqdm(examples, desc="converting examples to features"):
|
73 |
+
inputs, labels = handle_underscores(example['context'], tokenizer, keywords=example.get('keywords', None), prefix=True)
|
74 |
+
choices = [handle_underscores(cand, tokenizer) for cand in example['candidates']]
|
75 |
+
input_ids = [inputs + cand[0] for cand in choices]
|
76 |
+
input_ids = [tokenizer.convert_tokens_to_ids(cand) for cand in input_ids]
|
77 |
+
label_ids = [labels + cand[1] for cand in choices]
|
78 |
+
label_ids = [[t if t == -100 else input_ids[i][t_i] for t_i, t in enumerate(cand)] for i, cand in
|
79 |
+
enumerate(label_ids)]
|
80 |
+
label_ids = [[-100] + cand + [-100] for cand in label_ids]
|
81 |
+
input_ids = [tokenizer.prepare_for_model(cand, max_length=max_length, truncation=True)['input_ids'] for cand in
|
82 |
+
input_ids]
|
83 |
+
data.append([input_ids, label_ids, example['correct']])
|
84 |
+
return data
|
85 |
+
|
86 |
+
|
87 |
+
class ATOMICMLMProcessor(object):
|
88 |
+
def __init__(self, args):
|
89 |
+
self.D = []
|
90 |
+
self.filelist = [args.train_file, args.dev_file]
|
91 |
+
|
92 |
+
def get_train_examples(self):
|
93 |
+
self.load_data(self.filelist[0])
|
94 |
+
return self.D
|
95 |
+
|
96 |
+
def get_dev_examples(self):
|
97 |
+
data = []
|
98 |
+
with open(self.filelist[1], 'r') as f:
|
99 |
+
for row in tqdm(f):
|
100 |
+
sample = json.loads(row)
|
101 |
+
data.append(sample)
|
102 |
+
print(len(data))
|
103 |
+
return data
|
104 |
+
|
105 |
+
def load_data(self, filename):
|
106 |
+
with open(filename, "r") as f:
|
107 |
+
for row in tqdm(f):
|
108 |
+
sample = json.loads(row)
|
109 |
+
self.D.append({'id': sample['id'], 'context': sample['context'],
|
110 |
+
'ending': sample['candidates'][sample['correct']], 'keywords': sample.get('keywords', None)})
|
111 |
+
print(len(self.D))
|
112 |
+
|
113 |
+
|
114 |
+
class ATOMICProcessor(object):
|
115 |
+
def __init__(self, args):
|
116 |
+
print('loading from %s %s' % (args.train_file, args.dev_file))
|
117 |
+
self.filelist = [args.train_file, args.dev_file]
|
118 |
+
self.D = [[], []]
|
119 |
+
|
120 |
+
def get_train_examples(self):
|
121 |
+
self.load_data(self.filelist[0], 0)
|
122 |
+
return self.D[0]
|
123 |
+
|
124 |
+
def get_dev_examples(self):
|
125 |
+
self.load_data(self.filelist[1], 1)
|
126 |
+
return self.D[1]
|
127 |
+
|
128 |
+
def load_data(self, filename, sid):
|
129 |
+
with open(filename, "r") as f:
|
130 |
+
for row in tqdm(f):
|
131 |
+
sample = json.loads(row)
|
132 |
+
self.D[sid].append(sample)
|
133 |
+
print(len(self.D[sid]))
|
134 |
+
|
135 |
+
|
136 |
+
class CWWVProcessor(object):
|
137 |
+
def __init__(self, args):
|
138 |
+
self.answerKey_mapping = {'A': 0, 'B': 1, 'C': 2}
|
139 |
+
self.D = [[], []]
|
140 |
+
if args.task_name == 'cskg':
|
141 |
+
print('loading from %s %s' % (args.second_train_file, args.second_dev_file))
|
142 |
+
self.filelist = [args.second_train_file, args.second_dev_file]
|
143 |
+
else:
|
144 |
+
print('loading from %s %s' % (args.train_file, args.dev_file))
|
145 |
+
self.filelist = [args.train_file, args.dev_file]
|
146 |
+
|
147 |
+
def get_train_examples(self):
|
148 |
+
self.load_data(self.filelist[0], 0)
|
149 |
+
return self.D[0]
|
150 |
+
|
151 |
+
def get_dev_examples(self):
|
152 |
+
self.load_data(self.filelist[1], 1)
|
153 |
+
return self.D[1]
|
154 |
+
|
155 |
+
def load_data(self, filename, sid):
|
156 |
+
skipped = 0
|
157 |
+
with open(filename, "r") as f:
|
158 |
+
for row in tqdm(f):
|
159 |
+
sample = json.loads(row)
|
160 |
+
context = sample['question']['stem']
|
161 |
+
if context.endswith('.'):
|
162 |
+
context = context[:-1]
|
163 |
+
if not context.endswith('[MASK]'):
|
164 |
+
skipped += 1
|
165 |
+
context_parts = context.split('[MASK]')
|
166 |
+
context = context_parts[0].strip()
|
167 |
+
candidates = [c['text'] + context_parts[1] + '.' for c in sample['question']['choices']]
|
168 |
+
else:
|
169 |
+
context = context[:-7]
|
170 |
+
candidates = [c['text'] + '.' for c in sample['question']['choices']]
|
171 |
+
label = self.answerKey_mapping[sample['answerKey']]
|
172 |
+
keywords = nltk.word_tokenize(sample['question']['head'])
|
173 |
+
keywords = [w for w in keywords if w not in skip_words and w.lower() not in skip_words]
|
174 |
+
self.D[sid].append({'id': sample['id'], 'context': context, 'correct': label, 'candidates': candidates,
|
175 |
+
'keywords': keywords})
|
176 |
+
print(len(self.D[sid]), skipped)
|
177 |
+
|
178 |
+
|
179 |
+
class CWWVMLMProcessor(object):
|
180 |
+
def __init__(self, args):
|
181 |
+
self.answerKey_mapping = {'A': 0, 'B': 1, 'C': 2}
|
182 |
+
self.D = []
|
183 |
+
self.filelist = [args.train_file, args.dev_file]
|
184 |
+
self.args = args
|
185 |
+
|
186 |
+
def get_train_examples(self):
|
187 |
+
self.load_data(self.filelist[0])
|
188 |
+
return self.D
|
189 |
+
|
190 |
+
def get_dev_examples(self):
|
191 |
+
processor = CSKGProcessor(self.args)
|
192 |
+
return processor.get_dev_examples()
|
193 |
+
|
194 |
+
def load_data(self, filename):
|
195 |
+
skipped = 0
|
196 |
+
with open(filename, "r") as f:
|
197 |
+
for row in tqdm(f):
|
198 |
+
sample = json.loads(row)
|
199 |
+
context = sample['question']['stem']
|
200 |
+
if context.endswith('.'):
|
201 |
+
context = context[:-1]
|
202 |
+
assert context.endswith('[MASK]')
|
203 |
+
context = context[:-7]
|
204 |
+
candidates = [c['text'] + '.' for c in sample['question']['choices']]
|
205 |
+
label = self.answerKey_mapping[sample['answerKey']]
|
206 |
+
keywords = nltk.word_tokenize(sample['question']['head'])
|
207 |
+
keywords = [w for w in keywords if w not in skip_words and w.lower() not in skip_words]
|
208 |
+
self.D.append(
|
209 |
+
{'id': sample['id'], 'context': context, 'ending': candidates[label], 'keywords': keywords})
|
210 |
+
print(len(self.D))
|
211 |
+
|
212 |
+
|
213 |
+
class CSKGProcessor(object):
|
214 |
+
def __init__(self, args):
|
215 |
+
# CWWV set always uses second train/dev file params
|
216 |
+
self.atomicprocessor = ATOMICProcessor(args)
|
217 |
+
self.cwwvprocessor = CWWVProcessor(args)
|
218 |
+
|
219 |
+
def get_train_examples(self):
|
220 |
+
cwwv_questions = self.cwwvprocessor.get_train_examples()
|
221 |
+
atomic_questions = self.atomicprocessor.get_train_examples()
|
222 |
+
return cwwv_questions + atomic_questions
|
223 |
+
|
224 |
+
def get_dev_examples(self):
|
225 |
+
cwwv_questions = self.cwwvprocessor.get_dev_examples()
|
226 |
+
atomic_questions = self.atomicprocessor.get_dev_examples()
|
227 |
+
return cwwv_questions + atomic_questions
|
228 |
+
|
229 |
+
|
230 |
+
myprocessors = {
|
231 |
+
"atomic": ATOMICProcessor,
|
232 |
+
"cwwv": CWWVProcessor,
|
233 |
+
"atomicmlm": ATOMICMLMProcessor,
|
234 |
+
"cwwvmlm": CWWVMLMProcessor,
|
235 |
+
"cskg": CSKGProcessor
|
236 |
+
}
|
eval_results.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
acc = 0.475
|
logits_test.txt
ADDED
@@ -0,0 +1,120 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
-11.985331535339355 -13.357017517089844 -15.029851913452148 -16.39310073852539 -16.923053741455078
|
2 |
+
-12.25283432006836 -15.136346817016602 -15.764205932617188 -17.14737319946289 -16.522167205810547
|
3 |
+
-12.823394775390625 -15.571006774902344 -18.32282829284668 -13.100141525268555 -16.811420440673828
|
4 |
+
-10.969256401062012 -13.689325332641602 -11.483299255371094 -10.86734390258789 -15.446307182312012
|
5 |
+
-10.255317687988281 -11.23694133758545 -12.866697311401367 -10.5074462890625 -14.253149032592773
|
6 |
+
-12.706957817077637 -13.617804527282715 -11.692843437194824 -12.443273544311523 -15.97578239440918
|
7 |
+
-12.503711700439453 -17.07842254638672 -16.464298248291016 -14.878570556640625 -16.63575553894043
|
8 |
+
-11.61707592010498 -13.73621940612793 -12.556190490722656 -16.594358444213867 -15.703083038330078
|
9 |
+
-11.196725845336914 -15.495702743530273 -14.119497299194336 -11.031454086303711 -16.43398666381836
|
10 |
+
-10.521356582641602 -16.258441925048828 -17.279918670654297 -18.873933792114258 -15.915616989135742
|
11 |
+
-11.256342887878418 -18.144832611083984 -17.276641845703125 -15.105140686035156 -16.15310287475586
|
12 |
+
-11.635124206542969 -12.914545059204102 -13.48871898651123 -14.709991455078125 -16.50333023071289
|
13 |
+
-10.433307647705078 -10.201807022094727 -13.881892204284668 -15.707653045654297 -16.496707916259766
|
14 |
+
-12.453126907348633 -13.353202819824219 -11.582731246948242 -13.375235557556152 -17.256397247314453
|
15 |
+
-11.852107048034668 -10.913325309753418 -11.62298583984375 -11.65191650390625 -16.276226043701172
|
16 |
+
-11.433916091918945 -10.491494178771973 -12.900442123413086 -13.999748229980469 -15.658428192138672
|
17 |
+
-11.665186882019043 -12.186442375183105 -14.808893203735352 -14.345434188842773 -15.63730239868164
|
18 |
+
-11.523735046386719 -15.132838249206543 -14.409159660339355 -12.7765531539917 -16.388263702392578
|
19 |
+
-13.544512748718262 -13.325263977050781 -12.283462524414062 -12.502897262573242 -15.876867294311523
|
20 |
+
-11.84539794921875 -16.296030044555664 -13.924732208251953 -15.236044883728027 -16.84980583190918
|
21 |
+
-16.54426383972168 -14.162543296813965 -12.575240135192871 -13.8094482421875 -16.731632232666016
|
22 |
+
-9.845342636108398 -15.500575065612793 -11.547300338745117 -15.00468635559082 -15.337156295776367
|
23 |
+
-11.94580078125 -12.20471477508545 -11.616270065307617 -15.501757621765137 -15.509384155273438
|
24 |
+
-11.23939323425293 -12.356117248535156 -13.415891647338867 -11.913195610046387 -16.23021697998047
|
25 |
+
-13.631462097167969 -13.59908676147461 -13.40437126159668 -16.07756996154785 -15.115039825439453
|
26 |
+
-11.732011795043945 -14.669859886169434 -14.041311264038086 -15.339503288269043 -16.011241912841797
|
27 |
+
-8.993430137634277 -12.121005058288574 -10.010058403015137 -14.740504264831543 -14.144813537597656
|
28 |
+
-9.875417709350586 -9.784116744995117 -12.305227279663086 -15.662696838378906 -15.405596733093262
|
29 |
+
-9.947235107421875 -16.609920501708984 -16.379150390625 -20.26329231262207 -14.625556945800781
|
30 |
+
-16.708106994628906 -12.748739242553711 -13.981369018554688 -15.383566856384277 -14.687983512878418
|
31 |
+
-11.027362823486328 -17.01676368713379 -14.259870529174805 -13.757545471191406 -15.068336486816406
|
32 |
+
-14.97132682800293 -11.124801635742188 -14.391558647155762 -12.971904754638672 -15.092077255249023
|
33 |
+
-12.326019287109375 -13.14168930053711 -13.475115776062012 -14.218363761901855 -14.645342826843262
|
34 |
+
-11.144308090209961 -13.021101951599121 -14.144937515258789 -13.647077560424805 -15.991572380065918
|
35 |
+
-14.37043571472168 -14.487944602966309 -15.227438926696777 -17.627277374267578 -15.609060287475586
|
36 |
+
-12.285761833190918 -13.407965660095215 -15.185203552246094 -12.945239067077637 -15.660846710205078
|
37 |
+
-13.997186660766602 -13.769948959350586 -14.953908920288086 -11.359712600708008 -14.329699516296387
|
38 |
+
-11.684611320495605 -14.430723190307617 -16.186899185180664 -13.829656600952148 -17.049232482910156
|
39 |
+
-13.989039421081543 -10.588340759277344 -15.690905570983887 -16.892181396484375 -16.528379440307617
|
40 |
+
-11.620543479919434 -11.551864624023438 -13.757423400878906 -11.874419212341309 -15.980398178100586
|
41 |
+
-12.374351501464844 -14.128835678100586 -14.20466136932373 -16.15315818786621 -15.599609375
|
42 |
+
-14.862902641296387 -14.775538444519043 -11.799307823181152 -13.529033660888672 -16.550161361694336
|
43 |
+
-11.758308410644531 -12.798704147338867 -13.636115074157715 -15.04835319519043 -16.15018653869629
|
44 |
+
-10.89073371887207 -17.37094497680664 -16.38538360595703 -15.300247192382812 -15.836639404296875
|
45 |
+
-12.2295560836792 -13.281776428222656 -11.386110305786133 -13.427268981933594 -15.335490226745605
|
46 |
+
-19.555706024169922 -12.590005874633789 -14.160160064697266 -16.365543365478516 -17.29129981994629
|
47 |
+
-11.852313041687012 -12.861295700073242 -12.042010307312012 -13.391824722290039 -16.769405364990234
|
48 |
+
-11.795409202575684 -13.364195823669434 -14.922141075134277 -11.233430862426758 -16.088077545166016
|
49 |
+
-11.884429931640625 -12.776321411132812 -10.96551513671875 -13.180036544799805 -15.149337768554688
|
50 |
+
-14.861328125 -14.593585968017578 -12.553210258483887 -17.168903350830078 -15.611528396606445
|
51 |
+
-12.72950553894043 -10.737747192382812 -15.163175582885742 -14.780402183532715 -15.362897872924805
|
52 |
+
-10.313711166381836 -12.986738204956055 -13.380842208862305 -16.455732345581055 -14.981689453125
|
53 |
+
-12.478826522827148 -16.76121711730957 -16.831989288330078 -16.525733947753906 -15.847885131835938
|
54 |
+
-14.628618240356445 -11.984136581420898 -12.582441329956055 -16.439844131469727 -16.265674591064453
|
55 |
+
-11.344210624694824 -12.544027328491211 -15.989503860473633 -15.10544490814209 -15.973136901855469
|
56 |
+
-14.520594596862793 -13.788124084472656 -13.798048973083496 -13.979040145874023 -15.778616905212402
|
57 |
+
-13.025321006774902 -12.753511428833008 -11.481473922729492 -16.253257751464844 -14.98487377166748
|
58 |
+
-12.689830780029297 -16.152624130249023 -10.79024887084961 -13.604175567626953 -14.96052074432373
|
59 |
+
-10.081911087036133 -12.857580184936523 -14.366785049438477 -14.925143241882324 -15.236709594726562
|
60 |
+
-13.72541332244873 -17.140247344970703 -14.554573059082031 -16.237695693969727 -15.220977783203125
|
61 |
+
-12.363258361816406 -14.671875 -12.393234252929688 -13.685455322265625 -15.162212371826172
|
62 |
+
-12.525287628173828 -11.755924224853516 -11.487818717956543 -10.964709281921387 -14.18620491027832
|
63 |
+
-12.641595840454102 -12.06806468963623 -13.470266342163086 -15.523735046386719 -15.110023498535156
|
64 |
+
-10.243486404418945 -10.8483304977417 -15.268081665039062 -17.73096466064453 -14.491694450378418
|
65 |
+
-11.410097122192383 -14.304682731628418 -17.227609634399414 -15.861364364624023 -15.366393089294434
|
66 |
+
-13.248863220214844 -13.261842727661133 -13.531661033630371 -16.54248809814453 -16.259929656982422
|
67 |
+
-12.59164810180664 -13.846809387207031 -15.791946411132812 -13.07502269744873 -14.861738204956055
|
68 |
+
-15.870349884033203 -18.1973876953125 -14.544315338134766 -16.514846801757812 -14.571775436401367
|
69 |
+
-11.389364242553711 -12.424586296081543 -11.14108943939209 -15.748624801635742 -14.8790922164917
|
70 |
+
-12.217803001403809 -15.62755012512207 -16.650747299194336 -16.509571075439453 -15.311178207397461
|
71 |
+
-12.044157028198242 -14.750267028808594 -17.582698822021484 -13.546934127807617 -15.512325286865234
|
72 |
+
-14.079737663269043 -10.69660758972168 -13.699287414550781 -15.674205780029297 -14.529096603393555
|
73 |
+
-11.215898513793945 -13.137222290039062 -15.151588439941406 -15.361551284790039 -15.427042961120605
|
74 |
+
-15.472491264343262 -13.31407356262207 -17.27981948852539 -15.681211471557617 -15.767252922058105
|
75 |
+
-11.327293395996094 -17.34939956665039 -17.840465545654297 -15.820741653442383 -14.566900253295898
|
76 |
+
-13.018766403198242 -15.517611503601074 -17.448204040527344 -16.01276397705078 -15.718643188476562
|
77 |
+
-11.193071365356445 -15.165118217468262 -14.07136344909668 -12.923444747924805 -14.62411117553711
|
78 |
+
-12.101425170898438 -14.308100700378418 -14.739375114440918 -14.646849632263184 -14.93545913696289
|
79 |
+
-9.732519149780273 -12.507312774658203 -14.191499710083008 -12.70343017578125 -14.431779861450195
|
80 |
+
-14.082250595092773 -14.632597923278809 -15.651617050170898 -12.986234664916992 -16.02080726623535
|
81 |
+
-10.87934684753418 -15.8912992477417 -13.874499320983887 -14.047943115234375 -15.021934509277344
|
82 |
+
-13.368215560913086 -12.769327163696289 -12.11189079284668 -14.995542526245117 -15.780769348144531
|
83 |
+
-13.823423385620117 -18.496301651000977 -13.304229736328125 -18.130481719970703 -15.556083679199219
|
84 |
+
-11.371943473815918 -15.399284362792969 -16.673551559448242 -17.802629470825195 -16.158344268798828
|
85 |
+
-12.098010063171387 -16.252744674682617 -15.276991844177246 -15.084753036499023 -14.278797149658203
|
86 |
+
-13.902384757995605 -14.19427490234375 -15.481269836425781 -13.694448471069336 -15.118891716003418
|
87 |
+
-11.553057670593262 -18.223403930664062 -14.778602600097656 -17.133541107177734 -14.881399154663086
|
88 |
+
-11.718768119812012 -11.310720443725586 -18.56161117553711 -13.747978210449219 -14.171229362487793
|
89 |
+
-12.3494873046875 -10.71717643737793 -12.61784553527832 -13.59307861328125 -14.498141288757324
|
90 |
+
-14.827796936035156 -14.959348678588867 -12.612112045288086 -18.091611862182617 -16.525957107543945
|
91 |
+
-14.295256614685059 -17.82564926147461 -17.82574462890625 -15.090109825134277 -16.88511085510254
|
92 |
+
-11.850313186645508 -13.219352722167969 -13.954887390136719 -12.791426658630371 -14.770899772644043
|
93 |
+
-10.91953182220459 -14.908056259155273 -18.78179931640625 -16.55717658996582 -16.11922836303711
|
94 |
+
-10.402986526489258 -16.308622360229492 -13.00355052947998 -17.364574432373047 -14.528853416442871
|
95 |
+
-11.989408493041992 -16.08974266052246 -12.309541702270508 -17.035097122192383 -15.44270133972168
|
96 |
+
-12.839983940124512 -16.940263748168945 -16.2291259765625 -16.91362762451172 -15.839340209960938
|
97 |
+
-12.685194969177246 -15.007822036743164 -15.435506820678711 -15.527690887451172 -14.830557823181152
|
98 |
+
-15.379294395446777 -11.584933280944824 -13.179071426391602 -15.63725471496582 -15.120612144470215
|
99 |
+
-11.626914024353027 -13.498213768005371 -14.436857223510742 -16.254169464111328 -14.862478256225586
|
100 |
+
-12.431161880493164 -12.475348472595215 -16.244712829589844 -19.31494140625 -16.310794830322266
|
101 |
+
-11.904972076416016 -12.728023529052734 -16.9464054107666 -16.66975975036621 -17.148090362548828
|
102 |
+
-14.137011528015137 -16.81878662109375 -15.127734184265137 -15.06110954284668 -16.270536422729492
|
103 |
+
-10.801024436950684 -13.239822387695312 -13.742114067077637 -12.634249687194824 -14.606036186218262
|
104 |
+
-9.93199348449707 -16.211549758911133 -14.313543319702148 -15.699499130249023 -14.912216186523438
|
105 |
+
-13.826777458190918 -15.405548095703125 -16.025297164916992 -15.602980613708496 -15.071611404418945
|
106 |
+
-10.962064743041992 -14.387460708618164 -14.632959365844727 -11.710444450378418 -14.714736938476562
|
107 |
+
-11.960188865661621 -13.753063201904297 -15.276123046875 -18.502769470214844 -13.509201049804688
|
108 |
+
-14.572550773620605 -14.06547737121582 -13.678935050964355 -18.911367416381836 -15.910487174987793
|
109 |
+
-13.86817455291748 -17.146404266357422 -13.30243968963623 -14.152023315429688 -16.338394165039062
|
110 |
+
-12.468561172485352 -13.683039665222168 -14.846575736999512 -11.693964958190918 -14.717597961425781
|
111 |
+
-12.660326957702637 -12.625338554382324 -15.899386405944824 -13.582548141479492 -15.96905517578125
|
112 |
+
-9.468055725097656 -15.10066032409668 -13.716577529907227 -14.704435348510742 -13.372961044311523
|
113 |
+
-11.74072265625 -17.22024154663086 -16.204971313476562 -15.789412498474121 -15.067605972290039
|
114 |
+
-13.240243911743164 -12.687658309936523 -15.326522827148438 -17.321617126464844 -14.255077362060547
|
115 |
+
-15.12217903137207 -12.139941215515137 -13.076716423034668 -19.28219985961914 -14.893415451049805
|
116 |
+
-13.608329772949219 -16.2562313079834 -15.612630844116211 -14.110588073730469 -15.298316955566406
|
117 |
+
-12.895358085632324 -12.858833312988281 -16.372390747070312 -15.170218467712402 -15.558211326599121
|
118 |
+
-14.180404663085938 -15.49008560180664 -15.325713157653809 -14.368494987487793 -14.509702682495117
|
119 |
+
-13.97700309753418 -17.67074966430664 -16.38104248046875 -11.222564697265625 -14.656253814697266
|
120 |
+
-13.6754150390625 -13.450912475585938 -18.705039978027344 -14.589435577392578 -15.892086029052734
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:08ef1f881fcd130b64b6b3c53ae4af7d35415f6d144ea22a0559c38ef1d25f2b
|
3 |
+
size 1740904889
|
run_pretrain.py
ADDED
@@ -0,0 +1,659 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
|
3 |
+
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
# limitations under the License.
|
16 |
+
|
17 |
+
from __future__ import absolute_import
|
18 |
+
from __future__ import division
|
19 |
+
from __future__ import print_function
|
20 |
+
|
21 |
+
import argparse
|
22 |
+
import json
|
23 |
+
import logging
|
24 |
+
import os
|
25 |
+
import random
|
26 |
+
import wandb
|
27 |
+
|
28 |
+
import numpy as np
|
29 |
+
import torch
|
30 |
+
from torch.optim import AdamW
|
31 |
+
from torch.utils.data import DataLoader
|
32 |
+
from torch.utils.data import RandomSampler
|
33 |
+
from torch.utils.data import SequentialSampler
|
34 |
+
from torch.utils.data.distributed import DistributedSampler
|
35 |
+
from torch.utils.tensorboard import SummaryWriter
|
36 |
+
from tqdm import tqdm
|
37 |
+
from tqdm import trange
|
38 |
+
from transformers import DebertaV2Config
|
39 |
+
from transformers import DebertaV2ForMaskedLM
|
40 |
+
from transformers import DebertaV2Tokenizer
|
41 |
+
from transformers import RobertaConfig
|
42 |
+
from transformers import RobertaForMaskedLM
|
43 |
+
from transformers import RobertaTokenizer
|
44 |
+
from transformers import get_linear_schedule_with_warmup
|
45 |
+
|
46 |
+
from data_utils import accuracy
|
47 |
+
from data_utils import convert_examples_to_features
|
48 |
+
from data_utils import myprocessors
|
49 |
+
|
50 |
+
from evaluate_DeBERTa import eval_tasks
|
51 |
+
from evaluate_DeBERTa import main as evaluate_main
|
52 |
+
|
53 |
+
logger = logging.getLogger(__name__)
|
54 |
+
|
55 |
+
from transformers import MODEL_WITH_LM_HEAD_MAPPING
|
56 |
+
|
57 |
+
MODEL_CONFIG_CLASSES = list(MODEL_WITH_LM_HEAD_MAPPING.keys())
|
58 |
+
MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
|
59 |
+
MODEL_CLASSES = {
|
60 |
+
'roberta-mlm': (RobertaConfig, RobertaForMaskedLM, RobertaTokenizer),
|
61 |
+
'deberta-mlm': (DebertaV2Config, DebertaV2ForMaskedLM, DebertaV2Tokenizer)
|
62 |
+
}
|
63 |
+
|
64 |
+
|
65 |
+
class MyDataset(torch.utils.data.Dataset):
|
66 |
+
|
67 |
+
def __init__(self, data, pad_token, mask_token, max_words_to_mask):
|
68 |
+
self.data = data
|
69 |
+
self.pad_token = pad_token
|
70 |
+
self.mask_token = mask_token
|
71 |
+
self.max_words_to_mask = max_words_to_mask
|
72 |
+
|
73 |
+
def __len__(self):
|
74 |
+
return len(self.data)
|
75 |
+
|
76 |
+
def __getitem__(self, idx):
|
77 |
+
sample = self.data[idx]
|
78 |
+
return sample, self.pad_token, self.mask_token, self.max_words_to_mask
|
79 |
+
|
80 |
+
|
81 |
+
def mCollateFn(batch):
|
82 |
+
batch_input_ids = []
|
83 |
+
batch_input_mask = []
|
84 |
+
batch_input_labels = []
|
85 |
+
batch_label_ids = []
|
86 |
+
features = [b[0] for b in batch]
|
87 |
+
pad_token = batch[0][1]
|
88 |
+
mask_token = batch[0][2]
|
89 |
+
MAX_WORDS_TO_MASK = batch[0][3]
|
90 |
+
max_len = max([len(cand) for f in features for cand in f[0]])
|
91 |
+
for f in features:
|
92 |
+
batch_input_ids.append([])
|
93 |
+
batch_input_mask.append([])
|
94 |
+
batch_input_labels.append([])
|
95 |
+
batch_label_ids.append(f[2])
|
96 |
+
for i in range(len(f[0])):
|
97 |
+
masked_sequences = []
|
98 |
+
masked_labels = []
|
99 |
+
this_att_mask = []
|
100 |
+
sequence = f[0][i] + [pad_token] * (max_len - len(f[0][i]))
|
101 |
+
label_sequence = f[1][i] + [-100] * (max_len - len(f[1][i]))
|
102 |
+
valid_indices = [l_i for l_i, l in enumerate(label_sequence) if l != -100]
|
103 |
+
if len(valid_indices) > MAX_WORDS_TO_MASK:
|
104 |
+
rm_indices = random.sample(valid_indices, (len(valid_indices) - MAX_WORDS_TO_MASK))
|
105 |
+
label_sequence = [-100 if l_i in rm_indices else l for l_i, l in enumerate(label_sequence)]
|
106 |
+
for j, t in enumerate(label_sequence):
|
107 |
+
if t == -100:
|
108 |
+
continue
|
109 |
+
masked_sequences.append(sequence)
|
110 |
+
masked_labels.append([-100] * max_len)
|
111 |
+
else:
|
112 |
+
masked_sequences.append(sequence[:j] + [mask_token] + sequence[j + 1:])
|
113 |
+
masked_labels.append([-100] * j + [sequence[j]] + [-100] * (max_len - j - 1))
|
114 |
+
this_att_mask.append([1] * len(f[0][i]) + [0] * (max_len - len(f[0][i])))
|
115 |
+
batch_input_ids[-1].append(torch.tensor(masked_sequences, dtype=torch.long))
|
116 |
+
batch_input_mask[-1].append(torch.tensor(this_att_mask, dtype=torch.long))
|
117 |
+
batch_input_labels[-1].append(torch.tensor(masked_labels, dtype=torch.long))
|
118 |
+
return batch_input_ids, batch_input_mask, batch_input_labels, torch.tensor(batch_label_ids, dtype=torch.long)
|
119 |
+
|
120 |
+
|
121 |
+
def set_seed(args):
|
122 |
+
random.seed(args.seed)
|
123 |
+
np.random.seed(args.seed)
|
124 |
+
torch.manual_seed(args.seed)
|
125 |
+
if args.n_gpu > 0:
|
126 |
+
torch.cuda.manual_seed_all(args.seed)
|
127 |
+
|
128 |
+
|
129 |
+
def count_parameters(model):
|
130 |
+
return sum(p.numel() for p in model.parameters() if p.requires_grad)
|
131 |
+
|
132 |
+
|
133 |
+
def train(args, train_dataset, model, tokenizer, eval_dataset):
|
134 |
+
""" Train the model """
|
135 |
+
if args.local_rank in [-1, 0]:
|
136 |
+
tb_writer = SummaryWriter(os.path.join(args.output_dir, 'runs'))
|
137 |
+
|
138 |
+
args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu)
|
139 |
+
train_sampler = RandomSampler(train_dataset) if args.local_rank == -1 else DistributedSampler(train_dataset)
|
140 |
+
train_dataloader = DataLoader(train_dataset, sampler=train_sampler, batch_size=args.train_batch_size,
|
141 |
+
collate_fn=mCollateFn)
|
142 |
+
|
143 |
+
if args.max_steps > 0:
|
144 |
+
t_total = args.max_steps
|
145 |
+
args.num_train_epochs = args.max_steps // (len(train_dataloader) // args.gradient_accumulation_steps) + 1
|
146 |
+
else:
|
147 |
+
t_total = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs
|
148 |
+
|
149 |
+
# Prepare optimizer and schedule (linear warmup and decay)
|
150 |
+
no_decay = ['bias', 'LayerNorm.weight']
|
151 |
+
optimizer_grouped_parameters = [
|
152 |
+
{'params': [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],
|
153 |
+
'weight_decay': args.weight_decay},
|
154 |
+
{'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
|
155 |
+
]
|
156 |
+
|
157 |
+
warmup_steps = args.warmup_steps if args.warmup_steps != 0 else int(args.warmup_proportion * t_total)
|
158 |
+
logger.info("warm up steps = %d", warmup_steps)
|
159 |
+
optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon, betas=(0.9, 0.98))
|
160 |
+
scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=warmup_steps, num_training_steps=t_total)
|
161 |
+
|
162 |
+
if args.fp16:
|
163 |
+
try:
|
164 |
+
from apex import amp
|
165 |
+
except ImportError:
|
166 |
+
raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
|
167 |
+
model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level)
|
168 |
+
|
169 |
+
# multi-gpu training (should be after apex fp16 initialization)
|
170 |
+
if args.n_gpu > 1:
|
171 |
+
model = torch.nn.DataParallel(model)
|
172 |
+
|
173 |
+
# Distributed training (should be after apex fp16 initialization)
|
174 |
+
if args.local_rank != -1:
|
175 |
+
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.local_rank],
|
176 |
+
output_device=args.local_rank,
|
177 |
+
find_unused_parameters=True)
|
178 |
+
# Train!
|
179 |
+
logger.info("***** Running training *****")
|
180 |
+
logger.info(" Num examples = %d", len(train_dataset))
|
181 |
+
logger.info(" Num Epochs = %d", args.num_train_epochs)
|
182 |
+
logger.info(" Instantaneous batch size per GPU = %d", args.per_gpu_train_batch_size)
|
183 |
+
logger.info(" Total train batch size (w. parallel, distributed & accumulation) = %d",
|
184 |
+
args.train_batch_size * args.gradient_accumulation_steps * (
|
185 |
+
torch.distributed.get_world_size() if args.local_rank != -1 else 1))
|
186 |
+
logger.info(" Gradient Accumulation steps = %d", args.gradient_accumulation_steps)
|
187 |
+
logger.info(" Total optimization steps = %d", t_total)
|
188 |
+
|
189 |
+
global_step = 0
|
190 |
+
tr_loss, logging_loss = 0.0, 0.0
|
191 |
+
model.zero_grad()
|
192 |
+
train_iterator = trange(int(args.num_train_epochs), desc="Epoch", disable=args.local_rank not in [-1, 0])
|
193 |
+
set_seed(args) # Added here for reproductibility (even between python 2 and 3)
|
194 |
+
curr_best = 0.0
|
195 |
+
CE = torch.nn.CrossEntropyLoss(reduction='none')
|
196 |
+
loss_fct = torch.nn.MultiMarginLoss(margin=args.margin)
|
197 |
+
for _ in train_iterator:
|
198 |
+
epoch_iterator = tqdm(train_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0])
|
199 |
+
for step, batch in tqdm(enumerate(epoch_iterator), desc=f"Train Epoch {_}"):
|
200 |
+
model.train()
|
201 |
+
num_cand = len(batch[0][0])
|
202 |
+
choice_loss = []
|
203 |
+
choice_seq_lens = np.array([0] + [len(c) for sample in batch[0] for c in sample])
|
204 |
+
choice_seq_lens = np.cumsum(choice_seq_lens)
|
205 |
+
input_ids = torch.cat([c for sample in batch[0] for c in sample], dim=0).to(args.device)
|
206 |
+
att_mask = torch.cat([c for sample in batch[1] for c in sample], dim=0).to(args.device)
|
207 |
+
input_labels = torch.cat([c for sample in batch[2] for c in sample], dim=0).to(args.device)
|
208 |
+
|
209 |
+
if len(input_ids) < args.max_sequence_per_time:
|
210 |
+
inputs = {'input_ids': input_ids,
|
211 |
+
'attention_mask': att_mask}
|
212 |
+
outputs = model(**inputs)
|
213 |
+
ce_loss = CE(outputs[0].view(-1, outputs[0].size(-1)), input_labels.view(-1))
|
214 |
+
ce_loss = ce_loss.view(outputs[0].size(0), -1).sum(1)
|
215 |
+
else:
|
216 |
+
ce_loss = []
|
217 |
+
for chunk in range(0, len(input_ids), args.max_sequence_per_time):
|
218 |
+
inputs = {'input_ids': input_ids[chunk:chunk + args.max_sequence_per_time],
|
219 |
+
'attention_mask': att_mask[chunk:chunk + args.max_sequence_per_time]}
|
220 |
+
outputs = model(**inputs)
|
221 |
+
tmp_ce_loss = CE(outputs[0].view(-1, outputs[0].size(-1)),
|
222 |
+
input_labels[chunk:chunk + args.max_sequence_per_time].view(-1))
|
223 |
+
tmp_ce_loss = tmp_ce_loss.view(outputs[0].size(0), -1).sum(1)
|
224 |
+
ce_loss.append(tmp_ce_loss)
|
225 |
+
ce_loss = torch.cat(ce_loss, dim=0)
|
226 |
+
# all tokens are valid
|
227 |
+
for c_i in range(len(choice_seq_lens) - 1):
|
228 |
+
start = choice_seq_lens[c_i]
|
229 |
+
end = choice_seq_lens[c_i + 1]
|
230 |
+
choice_loss.append(-ce_loss[start:end].sum() / (end - start))
|
231 |
+
|
232 |
+
choice_loss = torch.stack(choice_loss)
|
233 |
+
choice_loss = choice_loss.view(-1, num_cand)
|
234 |
+
loss = loss_fct(choice_loss, batch[3].to(args.device))
|
235 |
+
|
236 |
+
if args.n_gpu > 1:
|
237 |
+
loss = loss.mean() # mean() to average on multi-gpu parallel training
|
238 |
+
if args.gradient_accumulation_steps > 1:
|
239 |
+
loss = loss / args.gradient_accumulation_steps
|
240 |
+
|
241 |
+
if args.fp16:
|
242 |
+
with amp.scale_loss(loss, optimizer) as scaled_loss:
|
243 |
+
scaled_loss.backward()
|
244 |
+
else:
|
245 |
+
loss.backward()
|
246 |
+
|
247 |
+
tr_loss += loss.item()
|
248 |
+
|
249 |
+
if (step + 1) % args.gradient_accumulation_steps == 0:
|
250 |
+
optimizer.step()
|
251 |
+
scheduler.step() # Update learning rate schedule
|
252 |
+
model.zero_grad()
|
253 |
+
global_step += 1
|
254 |
+
|
255 |
+
if args.local_rank in [-1, 0] and args.logging_steps > 0 and global_step % args.logging_steps == 0:
|
256 |
+
# Log metrics
|
257 |
+
tb_writer.add_scalar('lr', scheduler.get_last_lr()[0], global_step)
|
258 |
+
tb_writer.add_scalar('loss', (tr_loss - logging_loss) / args.logging_steps, global_step)
|
259 |
+
tb_writer.add_scalar('Batch_loss', loss.item() * args.gradient_accumulation_steps, global_step)
|
260 |
+
logger.info(" global_step = %s, average loss = %s", global_step,
|
261 |
+
(tr_loss - logging_loss) / args.logging_steps)
|
262 |
+
wandb.log({"train/loss":loss.item()})
|
263 |
+
logging_loss = tr_loss
|
264 |
+
|
265 |
+
if args.local_rank == -1 and args.evaluate_during_training and global_step % args.save_steps == 0:
|
266 |
+
torch.cuda.empty_cache()
|
267 |
+
results = evaluate(args, model, tokenizer, eval_dataset)
|
268 |
+
wandb.log({"eval/"+k:v for k,v in results.items()})
|
269 |
+
for key, value in results.items():
|
270 |
+
tb_writer.add_scalar('eval_{}'.format(key), value, global_step)
|
271 |
+
if results['acc'] > curr_best:
|
272 |
+
curr_best = results['acc']
|
273 |
+
print("At iteration {}, best acc is {}".format(global_step, curr_best))
|
274 |
+
# Save model checkpoint
|
275 |
+
output_dir = args.output_dir
|
276 |
+
if not os.path.exists(output_dir):
|
277 |
+
os.makedirs(output_dir)
|
278 |
+
model_to_save = model.module if hasattr(model,
|
279 |
+
'module') else model # Take care of distributed/parallel training
|
280 |
+
model_to_save.save_pretrained(output_dir)
|
281 |
+
tokenizer.save_pretrained(output_dir)
|
282 |
+
torch.save(args, os.path.join(output_dir, 'training_args.bin'))
|
283 |
+
logger.info("Saving model checkpoint to %s", output_dir)
|
284 |
+
|
285 |
+
if args.max_steps > 0 and global_step > args.max_steps:
|
286 |
+
epoch_iterator.close()
|
287 |
+
break
|
288 |
+
if args.max_steps > 0 and global_step > args.max_steps:
|
289 |
+
train_iterator.close()
|
290 |
+
break
|
291 |
+
results = evaluate(args, model, tokenizer, eval_dataset)
|
292 |
+
for key, value in results.items():
|
293 |
+
tb_writer.add_scalar('eval_{}'.format(key), value, global_step)
|
294 |
+
if results['acc'] > curr_best:
|
295 |
+
curr_best = results['acc']
|
296 |
+
# Save model checkpoint
|
297 |
+
output_dir = args.output_dir
|
298 |
+
if not os.path.exists(output_dir):
|
299 |
+
os.makedirs(output_dir)
|
300 |
+
model_to_save = model.module if hasattr(model,
|
301 |
+
'module') else model # Take care of distributed/parallel training
|
302 |
+
model_to_save.save_pretrained(output_dir)
|
303 |
+
tokenizer.save_pretrained(output_dir)
|
304 |
+
torch.save(args, os.path.join(output_dir, 'training_args.bin'))
|
305 |
+
logger.info("Saving model checkpoint to %s", output_dir)
|
306 |
+
if args.local_rank in [-1, 0]:
|
307 |
+
tb_writer.close()
|
308 |
+
return global_step, tr_loss / global_step
|
309 |
+
|
310 |
+
|
311 |
+
def save_logits(logits_all, filename):
|
312 |
+
with open(filename, "w") as f:
|
313 |
+
for i in range(len(logits_all)):
|
314 |
+
for j in range(len(logits_all[i])):
|
315 |
+
f.write(str(logits_all[i][j]))
|
316 |
+
if j == len(logits_all[i]) - 1:
|
317 |
+
f.write("\n")
|
318 |
+
else:
|
319 |
+
f.write(" ")
|
320 |
+
|
321 |
+
|
322 |
+
def evaluate(args, model, tokenizer, eval_dataset):
|
323 |
+
results = {}
|
324 |
+
if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]:
|
325 |
+
os.makedirs(args.output_dir)
|
326 |
+
|
327 |
+
args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu)
|
328 |
+
# Note that DistributedSampler samples randomly
|
329 |
+
eval_sampler = SequentialSampler(eval_dataset) if args.local_rank == -1 else DistributedSampler(eval_dataset)
|
330 |
+
eval_dataloader = DataLoader(eval_dataset, sampler=eval_sampler, batch_size=args.eval_batch_size,
|
331 |
+
collate_fn=mCollateFn)
|
332 |
+
|
333 |
+
# Eval!
|
334 |
+
logger.info("***** Running evaluation *****")
|
335 |
+
logger.info(" Num examples = %d", len(eval_dataset))
|
336 |
+
logger.info(" Batch size = %d", args.eval_batch_size)
|
337 |
+
CE = torch.nn.CrossEntropyLoss(reduction='none')
|
338 |
+
preds = []
|
339 |
+
out_label_ids = []
|
340 |
+
for batch in tqdm(eval_dataloader, desc="Evaluating"):
|
341 |
+
model.eval()
|
342 |
+
with torch.no_grad():
|
343 |
+
num_cand = len(batch[0][0])
|
344 |
+
choice_loss = []
|
345 |
+
choice_seq_lens = np.array([0] + [len(c) for sample in batch[0] for c in sample])
|
346 |
+
choice_seq_lens = np.cumsum(choice_seq_lens)
|
347 |
+
input_ids = torch.cat([c for sample in batch[0] for c in sample], dim=0).to(args.device)
|
348 |
+
att_mask = torch.cat([c for sample in batch[1] for c in sample], dim=0).to(args.device)
|
349 |
+
input_labels = torch.cat([c for sample in batch[2] for c in sample], dim=0).to(args.device)
|
350 |
+
if len(input_ids) < args.max_sequence_per_time:
|
351 |
+
inputs = {'input_ids': input_ids,
|
352 |
+
'attention_mask': att_mask}
|
353 |
+
outputs = model(**inputs)
|
354 |
+
ce_loss = CE(outputs[0].view(-1, outputs[0].size(-1)), input_labels.view(-1))
|
355 |
+
ce_loss = ce_loss.view(outputs[0].size(0), -1).sum(1)
|
356 |
+
else:
|
357 |
+
ce_loss = []
|
358 |
+
for chunk in range(0, len(input_ids), args.max_sequence_per_time):
|
359 |
+
inputs = {'input_ids': input_ids[chunk:chunk + args.max_sequence_per_time],
|
360 |
+
'attention_mask': att_mask[chunk:chunk + args.max_sequence_per_time]}
|
361 |
+
outputs = model(**inputs)
|
362 |
+
tmp_ce_loss = CE(outputs[0].view(-1, outputs[0].size(-1)),
|
363 |
+
input_labels[chunk:chunk + args.max_sequence_per_time].view(-1))
|
364 |
+
tmp_ce_loss = tmp_ce_loss.view(outputs[0].size(0), -1).sum(1)
|
365 |
+
ce_loss.append(tmp_ce_loss)
|
366 |
+
ce_loss = torch.cat(ce_loss, dim=0)
|
367 |
+
for c_i in range(len(choice_seq_lens) - 1):
|
368 |
+
start = choice_seq_lens[c_i]
|
369 |
+
end = choice_seq_lens[c_i + 1]
|
370 |
+
choice_loss.append(-ce_loss[start:end].sum() / (end - start))
|
371 |
+
choice_loss = torch.stack(choice_loss)
|
372 |
+
choice_loss = choice_loss.view(-1, num_cand)
|
373 |
+
preds.append(choice_loss)
|
374 |
+
out_label_ids.append(batch[3].numpy())
|
375 |
+
preds = torch.cat(preds, dim=0).cpu().numpy()
|
376 |
+
save_logits(preds.tolist(), os.path.join(args.output_dir, args.logits_file))
|
377 |
+
preds = np.argmax(preds, axis=1)
|
378 |
+
result = accuracy(preds, np.concatenate(out_label_ids, axis=0))
|
379 |
+
results.update(result)
|
380 |
+
output_eval_file = os.path.join(args.output_dir, args.results_file)
|
381 |
+
with open(output_eval_file, "w") as writer:
|
382 |
+
logger.info("***** Eval results *****")
|
383 |
+
for key in sorted(result.keys()):
|
384 |
+
print("%s = %s\n" % (key, str(result[key])))
|
385 |
+
logger.info(" %s = %s", key, str(result[key]))
|
386 |
+
writer.write("%s = %s\n" % (key, str(result[key])))
|
387 |
+
return results
|
388 |
+
|
389 |
+
|
390 |
+
def write_data(filename, data):
|
391 |
+
with open(filename, 'w') as fout:
|
392 |
+
for sample in data:
|
393 |
+
fout.write(json.dumps(sample))
|
394 |
+
fout.write('\n')
|
395 |
+
|
396 |
+
|
397 |
+
def load_and_cache_examples(args, task, tokenizer, evaluate=False):
|
398 |
+
if args.local_rank not in [-1, 0] and not evaluate:
|
399 |
+
torch.distributed.barrier() # Make sure only the first process in distributed training process the dataset, and the others will use the cache
|
400 |
+
processor = myprocessors[task](args)
|
401 |
+
cached_features_file = os.path.join(args.output_dir, 'cached_{}_{}_{}_{}'.format(
|
402 |
+
'dev' if evaluate else 'train',
|
403 |
+
str(args.model_type),
|
404 |
+
str(args.max_seq_length),
|
405 |
+
str(task)))
|
406 |
+
if os.path.exists(cached_features_file): # remove evaluate
|
407 |
+
print("loading cache file from", cached_features_file)
|
408 |
+
features = torch.load(cached_features_file)
|
409 |
+
else:
|
410 |
+
print("re-processing feature")
|
411 |
+
examples = processor.get_dev_examples() if evaluate else processor.get_train_examples()
|
412 |
+
features = convert_examples_to_features(examples, tokenizer, max_length=args.max_seq_length)
|
413 |
+
# if evaluate:
|
414 |
+
torch.save(features, cached_features_file)
|
415 |
+
if args.local_rank == 0 and not evaluate:
|
416 |
+
torch.distributed.barrier() # Make sure only the first process in distributed training process the dataset, and the others will use the cache
|
417 |
+
print('max_words_to_mask is %s for pretraining tasks %s' % (args.max_words_to_mask, task))
|
418 |
+
return MyDataset(features, tokenizer.pad_token_id, tokenizer.mask_token_id, args.max_words_to_mask)
|
419 |
+
|
420 |
+
|
421 |
+
def main():
|
422 |
+
parser = argparse.ArgumentParser()
|
423 |
+
|
424 |
+
## Required parameters
|
425 |
+
parser.add_argument("--train_file", default=None, type=str, required=True,
|
426 |
+
help="The train file name")
|
427 |
+
parser.add_argument("--dev_file", default=None, type=str, required=True,
|
428 |
+
help="The dev file name")
|
429 |
+
parser.add_argument("--model_type", default=None, type=str, required=True,
|
430 |
+
help="Model type selected in the list: " + ", ".join(MODEL_CLASSES.keys()))
|
431 |
+
parser.add_argument("--model_name_or_path", default=None, type=str, required=True,
|
432 |
+
help="Path to pre-trained model or shortcut name selected in the list: " + ", ".join(
|
433 |
+
MODEL_TYPES))
|
434 |
+
parser.add_argument("--config_name", default="", type=str,
|
435 |
+
help="Pretrained config name or path if not the same as model_name")
|
436 |
+
parser.add_argument("--tokenizer_name", default="", type=str,
|
437 |
+
help="Pretrained tokenizer name or path if not the same as model_name")
|
438 |
+
parser.add_argument("--cache_dir", default=".cache", type=str,
|
439 |
+
help="Where do you want to store the pre-trained models downloaded")
|
440 |
+
parser.add_argument("--task_name", default=None, type=str, required=True,
|
441 |
+
help="The name of the task to train selected in the list: " + ", ".join(myprocessors.keys()))
|
442 |
+
parser.add_argument("--output_dir", default=None, type=str, required=True,
|
443 |
+
help="The output directory where the model predictions and checkpoints will be written.")
|
444 |
+
|
445 |
+
## Other parameters
|
446 |
+
parser.add_argument("--second_train_file", default=None, type=str,
|
447 |
+
help="Used when combining ATOMIC and CWWV")
|
448 |
+
parser.add_argument("--second_dev_file", default=None, type=str,
|
449 |
+
help="Used when combining ATOMIC and CWWV")
|
450 |
+
parser.add_argument("--max_seq_length", default=128, type=int,
|
451 |
+
help="The maximum total input sequence length after tokenization. Sequences longer "
|
452 |
+
"than this will be truncated, sequences shorter will be padded.")
|
453 |
+
parser.add_argument("--max_words_to_mask", default=6, type=int,
|
454 |
+
help="The maximum number of tokens to mask when computing scores")
|
455 |
+
parser.add_argument("--max_sequence_per_time", default=80, type=int,
|
456 |
+
help="The maximum number of sequences to feed into the model")
|
457 |
+
parser.add_argument("--do_train", action='store_true',
|
458 |
+
help="Whether to run training.")
|
459 |
+
parser.add_argument("--do_eval", action='store_true',
|
460 |
+
help="Whether to run eval on the dev set.")
|
461 |
+
parser.add_argument("--do_ext_eval", action='store_true',
|
462 |
+
help="Whether to run external eval on the downstream mcqa datasets.")
|
463 |
+
parser.add_argument("--evaluate_during_training", action='store_true',
|
464 |
+
help="Run evaluation during training at each logging step.")
|
465 |
+
parser.add_argument("--do_lower_case", action='store_true',
|
466 |
+
help="Set this flag if you are using an uncased model.")
|
467 |
+
parser.add_argument("--per_gpu_train_batch_size", default=1, type=int,
|
468 |
+
help="Batch size per GPU/CPU for training.")
|
469 |
+
parser.add_argument("--per_gpu_eval_batch_size", default=1, type=int,
|
470 |
+
help="Batch size per GPU/CPU for evaluation.")
|
471 |
+
parser.add_argument('--gradient_accumulation_steps', type=int, default=1,
|
472 |
+
help="Number of updates steps to accumulate before performing a backward/update pass.")
|
473 |
+
parser.add_argument("--margin", default=1.0, type=float,
|
474 |
+
help="The margin for ranking loss")
|
475 |
+
parser.add_argument("--learning_rate", default=1e-5, type=float,
|
476 |
+
help="The initial learning rate for Adam.")
|
477 |
+
parser.add_argument("--weight_decay", default=0.01, type=float,
|
478 |
+
help="Weight deay if we apply some.")
|
479 |
+
parser.add_argument("--adam_epsilon", default=1e-6, type=float,
|
480 |
+
help="Epsilon for Adam optimizer.")
|
481 |
+
parser.add_argument("--max_grad_norm", default=1.0, type=float,
|
482 |
+
help="Max gradient norm.")
|
483 |
+
parser.add_argument("--num_train_epochs", default=1.0, type=float,
|
484 |
+
help="Total number of training epochs to perform.")
|
485 |
+
parser.add_argument("--max_steps", default=-1, type=int,
|
486 |
+
help="If > 0: set total number of training steps to perform. Override num_train_epochs.")
|
487 |
+
parser.add_argument("--warmup_steps", default=0, type=int,
|
488 |
+
help="Linear warmup over warmup_steps.")
|
489 |
+
parser.add_argument("--warmup_proportion", default=0.05, type=float,
|
490 |
+
help="Linear warmup over warmup proportion.")
|
491 |
+
parser.add_argument('--logging_steps', type=int, default=50,
|
492 |
+
help="Log every X updates steps.")
|
493 |
+
parser.add_argument('--save_steps', type=int, default=50,
|
494 |
+
help="Save checkpoint every X updates steps.")
|
495 |
+
parser.add_argument("--logits_file", default='logits_test.txt', type=str,
|
496 |
+
help="The file where prediction logits will be written")
|
497 |
+
parser.add_argument("--results_file", default='eval_results.txt', type=str,
|
498 |
+
help="The file where eval results will be written")
|
499 |
+
parser.add_argument("--no_cuda", action='store_true',
|
500 |
+
help="Avoid using CUDA when available")
|
501 |
+
parser.add_argument('--overwrite_output_dir', action='store_true',
|
502 |
+
help="Overwrite the content of the output directory")
|
503 |
+
parser.add_argument('--seed', type=int, default=42,
|
504 |
+
help="random seed for initialization")
|
505 |
+
parser.add_argument('--fp16', action='store_true',
|
506 |
+
help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit")
|
507 |
+
parser.add_argument('--fp16_opt_level', type=str, default='O1',
|
508 |
+
help="For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."
|
509 |
+
"See details at https://nvidia.github.io/apex/amp.html")
|
510 |
+
parser.add_argument("--local_rank", type=int, default=-1,
|
511 |
+
help="For distributed training: local_rank")
|
512 |
+
parser.add_argument('--server_ip', type=str, default='', help="For distant debugging.")
|
513 |
+
parser.add_argument('--server_port', type=str, default='', help="For distant debugging.")
|
514 |
+
|
515 |
+
### for extrinsic evaluation
|
516 |
+
|
517 |
+
parser.add_argument("--eval_output_dir", default="./output/eval_results", type=str, required=True,
|
518 |
+
help="output of the predictions")
|
519 |
+
|
520 |
+
args = parser.parse_args()
|
521 |
+
|
522 |
+
wandb.init(project="car_mcqa", config=args)
|
523 |
+
|
524 |
+
if os.path.exists(args.output_dir) and os.listdir(
|
525 |
+
args.output_dir) and not args.overwrite_output_dir and args.do_train:
|
526 |
+
raise ValueError(
|
527 |
+
"Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome.".format(
|
528 |
+
args.output_dir))
|
529 |
+
if not os.path.exists(args.output_dir):
|
530 |
+
os.makedirs(args.output_dir)
|
531 |
+
|
532 |
+
# Setup CUDA, GPU & distributed training
|
533 |
+
if args.local_rank == -1 or args.no_cuda:
|
534 |
+
device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
|
535 |
+
args.n_gpu = torch.cuda.device_count()
|
536 |
+
else: # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
|
537 |
+
torch.cuda.set_device(args.local_rank)
|
538 |
+
device = torch.device("cuda", args.local_rank)
|
539 |
+
torch.distributed.init_process_group(backend='nccl')
|
540 |
+
args.n_gpu = 1
|
541 |
+
args.device = device
|
542 |
+
|
543 |
+
if args.do_train:
|
544 |
+
for handler in logging.root.handlers[:]:
|
545 |
+
logging.root.removeHandler(handler)
|
546 |
+
# Setup logging
|
547 |
+
if args.do_train:
|
548 |
+
log_file = os.path.join(args.output_dir, 'train.log')
|
549 |
+
logging.basicConfig(format='%(asctime)s - %(levelname)s - %(name)s - %(message)s',
|
550 |
+
datefmt='%m/%d/%Y %H:%M:%S',
|
551 |
+
level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN,
|
552 |
+
filename=log_file)
|
553 |
+
logger.warning("Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
|
554 |
+
args.local_rank, device, args.n_gpu, bool(args.local_rank != -1), args.fp16)
|
555 |
+
os.system("cp run_pretrain.py %s" % os.path.join(args.output_dir, 'run_pretrain.py'))
|
556 |
+
os.system("cp data_utils.py %s" % os.path.join(args.output_dir, 'data_utils.py'))
|
557 |
+
|
558 |
+
# Set seed
|
559 |
+
set_seed(args)
|
560 |
+
args.task_name = args.task_name.lower()
|
561 |
+
if args.task_name not in myprocessors:
|
562 |
+
raise ValueError("Task not found: %s" % (args.task_name))
|
563 |
+
|
564 |
+
args.model_type = args.model_type.lower()
|
565 |
+
config_class, model_class, tokenizer_class = MODEL_CLASSES[args.model_type]
|
566 |
+
config = config_class.from_pretrained(args.config_name if args.config_name else args.model_name_or_path,
|
567 |
+
finetuning_task=args.task_name, cache_dir=args.cache_dir)
|
568 |
+
tokenizer = tokenizer_class.from_pretrained(args.tokenizer_name if args.tokenizer_name else args.model_name_or_path,
|
569 |
+
do_lower_case=args.do_lower_case, cache_dir=args.cache_dir)
|
570 |
+
model = model_class.from_pretrained(args.model_name_or_path, from_tf=bool('.ckpt' in args.model_name_or_path),
|
571 |
+
config=config, cache_dir=args.cache_dir)
|
572 |
+
|
573 |
+
count = count_parameters(model)
|
574 |
+
print("number of params", count)
|
575 |
+
|
576 |
+
if args.local_rank == 0:
|
577 |
+
torch.distributed.barrier() # Make sure only the first process in distributed training will download model & vocab
|
578 |
+
|
579 |
+
model.to(args.device)
|
580 |
+
|
581 |
+
logger.info("Training/evaluation parameters %s", args)
|
582 |
+
|
583 |
+
print("loading eval set")
|
584 |
+
eval_dataset = load_and_cache_examples(args, args.task_name, tokenizer, evaluate=True)
|
585 |
+
print("num of eval set", len(eval_dataset))
|
586 |
+
|
587 |
+
if args.do_train:
|
588 |
+
init_result = evaluate(args, model, tokenizer, eval_dataset)
|
589 |
+
print(init_result)
|
590 |
+
|
591 |
+
if args.do_train:
|
592 |
+
print("loading training set")
|
593 |
+
train_dataset = load_and_cache_examples(args, args.task_name, tokenizer, evaluate=False)
|
594 |
+
print("num train examples", len(train_dataset))
|
595 |
+
global_step, tr_loss = train(args, train_dataset, model, tokenizer, eval_dataset)
|
596 |
+
logger.info(" global_step = %s, average loss = %s", global_step, tr_loss)
|
597 |
+
|
598 |
+
# Evaluation
|
599 |
+
|
600 |
+
results = {}
|
601 |
+
if args.do_eval:
|
602 |
+
tokenizer = tokenizer_class.from_pretrained(args.output_dir, do_lower_case=args.do_lower_case)
|
603 |
+
model = model_class.from_pretrained(args.output_dir)
|
604 |
+
model.eval()
|
605 |
+
model.to(args.device)
|
606 |
+
result = evaluate(args, model, tokenizer, eval_dataset)
|
607 |
+
|
608 |
+
|
609 |
+
# do extrinsic evaluation
|
610 |
+
|
611 |
+
if args.do_ext_eval:
|
612 |
+
del model
|
613 |
+
import gc
|
614 |
+
gc.collect()
|
615 |
+
torch.cuda.empty_cache()
|
616 |
+
|
617 |
+
|
618 |
+
ext_results = {}
|
619 |
+
ext_task_avg_acc = 0
|
620 |
+
|
621 |
+
for task_name, dataset_path in eval_tasks:
|
622 |
+
eval_args = argparse.Namespace()
|
623 |
+
eval_args.dataset_file = dataset_path
|
624 |
+
eval_args.lm = args.output_dir
|
625 |
+
eval_args.out_dir = os.path.join(args.eval_output_dir, os.path.basename( args.output_dir))
|
626 |
+
eval_args.device = 0
|
627 |
+
eval_args.reader = task_name
|
628 |
+
eval_args.overwrite_output_dir = args.overwrite_output_dir
|
629 |
+
eval_args.cache_dir = None
|
630 |
+
if task_name in ["socialiqa", "winogrande", "piqa", "commonsenseqa", "anli"]:
|
631 |
+
acc = evaluate_main(eval_args)
|
632 |
+
ext_results[task_name] = acc
|
633 |
+
ext_task_avg_acc += acc
|
634 |
+
else:
|
635 |
+
tokenizer = tokenizer_class.from_pretrained(args.output_dir, do_lower_case=args.do_lower_case)
|
636 |
+
model = model_class.from_pretrained(args.output_dir)
|
637 |
+
model.eval()
|
638 |
+
model.to(args.device)
|
639 |
+
|
640 |
+
# load data
|
641 |
+
examples = []
|
642 |
+
with open(dataset_path, "r") as f:
|
643 |
+
for row in tqdm(f):
|
644 |
+
sample = json.loads(row)
|
645 |
+
examples.append(sample)
|
646 |
+
features = convert_examples_to_features(examples, tokenizer, max_length=args.max_seq_length)
|
647 |
+
eval_dataset = MyDataset(features, tokenizer.pad_token_id, tokenizer.mask_token_id, args.max_words_to_mask)
|
648 |
+
result = evaluate(args, model, tokenizer, eval_dataset)
|
649 |
+
ext_results[task_name] = result['acc']
|
650 |
+
|
651 |
+
ext_results['avg'] = ext_task_avg_acc / 5
|
652 |
+
|
653 |
+
|
654 |
+
wandb.log({"ext/"+task_name:acc for task_name, acc in ext_results.items()})
|
655 |
+
|
656 |
+
# return results
|
657 |
+
|
658 |
+
if __name__ == "__main__":
|
659 |
+
main()
|
runs/events.out.tfevents.1696030376.car-2i-100k-name-seed101-5e-6-0-0.28.0
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fa047531aca9a5c6a3f42669cbaabf4bdeca5754bfbfbc15fdc873d816d158f8
|
3 |
+
size 53212
|
special_tokens_map.json
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": "[CLS]",
|
3 |
+
"cls_token": "[CLS]",
|
4 |
+
"eos_token": "[SEP]",
|
5 |
+
"mask_token": "[MASK]",
|
6 |
+
"pad_token": "[PAD]",
|
7 |
+
"sep_token": "[SEP]",
|
8 |
+
"unk_token": "[UNK]"
|
9 |
+
}
|
spm.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c679fbf93643d19aab7ee10c0b99e460bdbc02fedf34b92b05af343b4af586fd
|
3 |
+
size 2464616
|
tokenizer_config.json
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": "[CLS]",
|
3 |
+
"clean_up_tokenization_spaces": true,
|
4 |
+
"cls_token": "[CLS]",
|
5 |
+
"do_lower_case": false,
|
6 |
+
"eos_token": "[SEP]",
|
7 |
+
"mask_token": "[MASK]",
|
8 |
+
"model_max_length": 1000000000000000019884624838656,
|
9 |
+
"pad_token": "[PAD]",
|
10 |
+
"sep_token": "[SEP]",
|
11 |
+
"sp_model_kwargs": {},
|
12 |
+
"split_by_punct": false,
|
13 |
+
"tokenizer_class": "DebertaV2Tokenizer",
|
14 |
+
"unk_token": "[UNK]",
|
15 |
+
"vocab_type": "spm"
|
16 |
+
}
|
train.log
ADDED
@@ -0,0 +1,878 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
09/29/2023 23:17:38 - WARNING - __main__ - Process rank: -1, device: cuda, n_gpu: 1, distributed training: False, 16-bits training: False
|
2 |
+
09/29/2023 23:17:49 - INFO - __main__ - Training/evaluation parameters Namespace(train_file='../../../data/mcqa/atomic/train_atmc_2i_100k_name.jsonl', dev_file='../../../data/mcqa/atomic/dev_atmc_SyntheticQA_10k.jsonl', model_type='deberta-mlm', model_name_or_path='microsoft/deberta-v3-large', config_name='', tokenizer_name='', cache_dir='.cache', task_name='atomic', output_dir='output/Output_ATOMIC-pseudo-wWC/car_2i/deberta-v3-large_car_2i_name_100k_seed_101_5e-6', second_train_file=None, second_dev_file=None, max_seq_length=128, max_words_to_mask=6, max_sequence_per_time=80, do_train=True, do_eval=True, do_ext_eval=True, evaluate_during_training=True, do_lower_case=False, per_gpu_train_batch_size=2, per_gpu_eval_batch_size=32, gradient_accumulation_steps=16, margin=1.0, learning_rate=5e-06, weight_decay=0.01, adam_epsilon=1e-06, max_grad_norm=1.0, num_train_epochs=1.0, max_steps=-1, warmup_steps=0, warmup_proportion=0.05, logging_steps=50, save_steps=200, logits_file='logits_test.txt', results_file='eval_results.txt', no_cuda=False, overwrite_output_dir=False, seed=101, fp16=False, fp16_opt_level='O1', local_rank=-1, server_ip='', server_port='', eval_output_dir='./eval_results', n_gpu=1, device=device(type='cuda'))
|
3 |
+
09/29/2023 23:17:58 - INFO - __main__ - ***** Running evaluation *****
|
4 |
+
09/29/2023 23:17:58 - INFO - __main__ - Num examples = 10000
|
5 |
+
09/29/2023 23:17:58 - INFO - __main__ - Batch size = 32
|
6 |
+
09/29/2023 23:22:13 - INFO - __main__ - ***** Eval results *****
|
7 |
+
09/29/2023 23:22:13 - INFO - __main__ - acc = 0.3356
|
8 |
+
09/29/2023 23:32:56 - INFO - __main__ - warm up steps = 916
|
9 |
+
09/29/2023 23:32:56 - INFO - __main__ - ***** Running training *****
|
10 |
+
09/29/2023 23:32:56 - INFO - __main__ - Num examples = 586778
|
11 |
+
09/29/2023 23:32:56 - INFO - __main__ - Num Epochs = 1
|
12 |
+
09/29/2023 23:32:56 - INFO - __main__ - Instantaneous batch size per GPU = 2
|
13 |
+
09/29/2023 23:32:56 - INFO - __main__ - Total train batch size (w. parallel, distributed & accumulation) = 32
|
14 |
+
09/29/2023 23:32:56 - INFO - __main__ - Gradient Accumulation steps = 16
|
15 |
+
09/29/2023 23:32:56 - INFO - __main__ - Total optimization steps = 18336
|
16 |
+
09/29/2023 23:36:55 - INFO - __main__ - global_step = 50, average loss = 0.6978485188353807
|
17 |
+
09/29/2023 23:41:05 - INFO - __main__ - global_step = 100, average loss = 0.6761001783981919
|
18 |
+
09/29/2023 23:45:18 - INFO - __main__ - global_step = 150, average loss = 0.6527128890505992
|
19 |
+
09/29/2023 23:49:15 - INFO - __main__ - global_step = 200, average loss = 0.6255776268531917
|
20 |
+
09/29/2023 23:49:16 - INFO - __main__ - ***** Running evaluation *****
|
21 |
+
09/29/2023 23:49:16 - INFO - __main__ - Num examples = 10000
|
22 |
+
09/29/2023 23:49:16 - INFO - __main__ - Batch size = 32
|
23 |
+
09/29/2023 23:53:34 - INFO - __main__ - ***** Eval results *****
|
24 |
+
09/29/2023 23:53:34 - INFO - __main__ - acc = 0.3839
|
25 |
+
09/29/2023 23:54:05 - INFO - __main__ - Saving model checkpoint to output/Output_ATOMIC-pseudo-wWC/car_2i/deberta-v3-large_car_2i_name_100k_seed_101_5e-6
|
26 |
+
09/29/2023 23:58:03 - INFO - __main__ - global_step = 250, average loss = 0.5687153974524699
|
27 |
+
09/30/2023 00:02:07 - INFO - __main__ - global_step = 300, average loss = 0.4650766727951122
|
28 |
+
09/30/2023 00:06:15 - INFO - __main__ - global_step = 350, average loss = 0.344281620121983
|
29 |
+
09/30/2023 00:10:25 - INFO - __main__ - global_step = 400, average loss = 0.2641717765412432
|
30 |
+
09/30/2023 00:10:26 - INFO - __main__ - ***** Running evaluation *****
|
31 |
+
09/30/2023 00:10:26 - INFO - __main__ - Num examples = 10000
|
32 |
+
09/30/2023 00:10:26 - INFO - __main__ - Batch size = 32
|
33 |
+
09/30/2023 00:14:45 - INFO - __main__ - ***** Eval results *****
|
34 |
+
09/30/2023 00:14:45 - INFO - __main__ - acc = 0.6657
|
35 |
+
09/30/2023 00:15:14 - INFO - __main__ - Saving model checkpoint to output/Output_ATOMIC-pseudo-wWC/car_2i/deberta-v3-large_car_2i_name_100k_seed_101_5e-6
|
36 |
+
09/30/2023 00:19:09 - INFO - __main__ - global_step = 450, average loss = 0.203622583138349
|
37 |
+
09/30/2023 00:23:15 - INFO - __main__ - global_step = 500, average loss = 0.19167841194193896
|
38 |
+
09/30/2023 00:27:33 - INFO - __main__ - global_step = 550, average loss = 0.1768511165331256
|
39 |
+
09/30/2023 00:31:46 - INFO - __main__ - global_step = 600, average loss = 0.17364913663874176
|
40 |
+
09/30/2023 00:31:47 - INFO - __main__ - ***** Running evaluation *****
|
41 |
+
09/30/2023 00:31:47 - INFO - __main__ - Num examples = 10000
|
42 |
+
09/30/2023 00:31:47 - INFO - __main__ - Batch size = 32
|
43 |
+
09/30/2023 00:36:06 - INFO - __main__ - ***** Eval results *****
|
44 |
+
09/30/2023 00:36:06 - INFO - __main__ - acc = 0.7383
|
45 |
+
09/30/2023 00:36:35 - INFO - __main__ - Saving model checkpoint to output/Output_ATOMIC-pseudo-wWC/car_2i/deberta-v3-large_car_2i_name_100k_seed_101_5e-6
|
46 |
+
09/30/2023 00:40:35 - INFO - __main__ - global_step = 650, average loss = 0.16046627445422929
|
47 |
+
09/30/2023 00:44:50 - INFO - __main__ - global_step = 700, average loss = 0.15604460480608395
|
48 |
+
09/30/2023 00:49:12 - INFO - __main__ - global_step = 750, average loss = 0.16073274322843645
|
49 |
+
09/30/2023 00:53:44 - INFO - __main__ - global_step = 800, average loss = 0.15695772335122457
|
50 |
+
09/30/2023 00:53:44 - INFO - __main__ - ***** Running evaluation *****
|
51 |
+
09/30/2023 00:53:44 - INFO - __main__ - Num examples = 10000
|
52 |
+
09/30/2023 00:53:44 - INFO - __main__ - Batch size = 32
|
53 |
+
09/30/2023 00:58:03 - INFO - __main__ - ***** Eval results *****
|
54 |
+
09/30/2023 00:58:03 - INFO - __main__ - acc = 0.7684
|
55 |
+
09/30/2023 00:58:33 - INFO - __main__ - Saving model checkpoint to output/Output_ATOMIC-pseudo-wWC/car_2i/deberta-v3-large_car_2i_name_100k_seed_101_5e-6
|
56 |
+
09/30/2023 01:02:32 - INFO - __main__ - global_step = 850, average loss = 0.14848782167286118
|
57 |
+
09/30/2023 01:06:57 - INFO - __main__ - global_step = 900, average loss = 0.12806821554375347
|
58 |
+
09/30/2023 01:11:28 - INFO - __main__ - global_step = 950, average loss = 0.1180885765995481
|
59 |
+
09/30/2023 01:15:52 - INFO - __main__ - global_step = 1000, average loss = 0.13545685631077503
|
60 |
+
09/30/2023 01:15:53 - INFO - __main__ - ***** Running evaluation *****
|
61 |
+
09/30/2023 01:15:53 - INFO - __main__ - Num examples = 10000
|
62 |
+
09/30/2023 01:15:53 - INFO - __main__ - Batch size = 32
|
63 |
+
09/30/2023 01:20:11 - INFO - __main__ - ***** Eval results *****
|
64 |
+
09/30/2023 01:20:11 - INFO - __main__ - acc = 0.7644
|
65 |
+
09/30/2023 01:24:17 - INFO - __main__ - global_step = 1050, average loss = 0.11866092401789502
|
66 |
+
09/30/2023 01:28:20 - INFO - __main__ - global_step = 1100, average loss = 0.12610675325471676
|
67 |
+
09/30/2023 01:32:47 - INFO - __main__ - global_step = 1150, average loss = 0.10549746582400985
|
68 |
+
09/30/2023 01:37:16 - INFO - __main__ - global_step = 1200, average loss = 0.12280375221620489
|
69 |
+
09/30/2023 01:37:17 - INFO - __main__ - ***** Running evaluation *****
|
70 |
+
09/30/2023 01:37:17 - INFO - __main__ - Num examples = 10000
|
71 |
+
09/30/2023 01:37:17 - INFO - __main__ - Batch size = 32
|
72 |
+
09/30/2023 01:41:35 - INFO - __main__ - ***** Eval results *****
|
73 |
+
09/30/2023 01:41:35 - INFO - __main__ - acc = 0.7802
|
74 |
+
09/30/2023 01:42:04 - INFO - __main__ - Saving model checkpoint to output/Output_ATOMIC-pseudo-wWC/car_2i/deberta-v3-large_car_2i_name_100k_seed_101_5e-6
|
75 |
+
09/30/2023 01:46:00 - INFO - __main__ - global_step = 1250, average loss = 0.11540970739923068
|
76 |
+
09/30/2023 01:50:18 - INFO - __main__ - global_step = 1300, average loss = 0.1098322441923665
|
77 |
+
09/30/2023 01:54:50 - INFO - __main__ - global_step = 1350, average loss = 0.12102181358681265
|
78 |
+
09/30/2023 01:59:20 - INFO - __main__ - global_step = 1400, average loss = 0.11920341529325014
|
79 |
+
09/30/2023 01:59:20 - INFO - __main__ - ***** Running evaluation *****
|
80 |
+
09/30/2023 01:59:20 - INFO - __main__ - Num examples = 10000
|
81 |
+
09/30/2023 01:59:20 - INFO - __main__ - Batch size = 32
|
82 |
+
09/30/2023 02:03:40 - INFO - __main__ - ***** Eval results *****
|
83 |
+
09/30/2023 02:03:40 - INFO - __main__ - acc = 0.7991
|
84 |
+
09/30/2023 02:04:09 - INFO - __main__ - Saving model checkpoint to output/Output_ATOMIC-pseudo-wWC/car_2i/deberta-v3-large_car_2i_name_100k_seed_101_5e-6
|
85 |
+
09/30/2023 02:08:14 - INFO - __main__ - global_step = 1450, average loss = 0.12416476066496215
|
86 |
+
09/30/2023 02:12:18 - INFO - __main__ - global_step = 1500, average loss = 0.11171700998882443
|
87 |
+
09/30/2023 02:16:39 - INFO - __main__ - global_step = 1550, average loss = 0.11893717237122474
|
88 |
+
09/30/2023 02:21:18 - INFO - __main__ - global_step = 1600, average loss = 0.11236542866332457
|
89 |
+
09/30/2023 02:21:18 - INFO - __main__ - ***** Running evaluation *****
|
90 |
+
09/30/2023 02:21:18 - INFO - __main__ - Num examples = 10000
|
91 |
+
09/30/2023 02:21:18 - INFO - __main__ - Batch size = 32
|
92 |
+
09/30/2023 02:25:38 - INFO - __main__ - ***** Eval results *****
|
93 |
+
09/30/2023 02:25:38 - INFO - __main__ - acc = 0.7998
|
94 |
+
09/30/2023 02:26:08 - INFO - __main__ - Saving model checkpoint to output/Output_ATOMIC-pseudo-wWC/car_2i/deberta-v3-large_car_2i_name_100k_seed_101_5e-6
|
95 |
+
09/30/2023 02:30:17 - INFO - __main__ - global_step = 1650, average loss = 0.11477049457775138
|
96 |
+
09/30/2023 02:34:26 - INFO - __main__ - global_step = 1700, average loss = 0.10185962059051235
|
97 |
+
09/30/2023 02:38:45 - INFO - __main__ - global_step = 1750, average loss = 0.08941184240770554
|
98 |
+
09/30/2023 02:43:11 - INFO - __main__ - global_step = 1800, average loss = 0.12326178842118679
|
99 |
+
09/30/2023 02:43:11 - INFO - __main__ - ***** Running evaluation *****
|
100 |
+
09/30/2023 02:43:11 - INFO - __main__ - Num examples = 10000
|
101 |
+
09/30/2023 02:43:11 - INFO - __main__ - Batch size = 32
|
102 |
+
09/30/2023 02:47:30 - INFO - __main__ - ***** Eval results *****
|
103 |
+
09/30/2023 02:47:30 - INFO - __main__ - acc = 0.7949
|
104 |
+
09/30/2023 02:51:33 - INFO - __main__ - global_step = 1850, average loss = 0.1172889139153267
|
105 |
+
09/30/2023 02:55:34 - INFO - __main__ - global_step = 1900, average loss = 0.11077741613984472
|
106 |
+
09/30/2023 02:59:53 - INFO - __main__ - global_step = 1950, average loss = 0.11476122897045571
|
107 |
+
09/30/2023 03:04:26 - INFO - __main__ - global_step = 2000, average loss = 0.11272342270149238
|
108 |
+
09/30/2023 03:04:27 - INFO - __main__ - ***** Running evaluation *****
|
109 |
+
09/30/2023 03:04:27 - INFO - __main__ - Num examples = 10000
|
110 |
+
09/30/2023 03:04:27 - INFO - __main__ - Batch size = 32
|
111 |
+
09/30/2023 03:08:46 - INFO - __main__ - ***** Eval results *****
|
112 |
+
09/30/2023 03:08:46 - INFO - __main__ - acc = 0.796
|
113 |
+
09/30/2023 03:12:55 - INFO - __main__ - global_step = 2050, average loss = 0.10859557473420864
|
114 |
+
09/30/2023 03:17:10 - INFO - __main__ - global_step = 2100, average loss = 0.09719053598862956
|
115 |
+
09/30/2023 03:21:26 - INFO - __main__ - global_step = 2150, average loss = 0.11492000469923369
|
116 |
+
09/30/2023 03:25:59 - INFO - __main__ - global_step = 2200, average loss = 0.09694181648810626
|
117 |
+
09/30/2023 03:25:59 - INFO - __main__ - ***** Running evaluation *****
|
118 |
+
09/30/2023 03:25:59 - INFO - __main__ - Num examples = 10000
|
119 |
+
09/30/2023 03:25:59 - INFO - __main__ - Batch size = 32
|
120 |
+
09/30/2023 03:30:18 - INFO - __main__ - ***** Eval results *****
|
121 |
+
09/30/2023 03:30:18 - INFO - __main__ - acc = 0.7974
|
122 |
+
09/30/2023 03:34:20 - INFO - __main__ - global_step = 2250, average loss = 0.10450371610718548
|
123 |
+
09/30/2023 03:38:29 - INFO - __main__ - global_step = 2300, average loss = 0.09968944377507796
|
124 |
+
09/30/2023 03:42:35 - INFO - __main__ - global_step = 2350, average loss = 0.09726969640512834
|
125 |
+
09/30/2023 03:46:47 - INFO - __main__ - global_step = 2400, average loss = 0.10790286644703884
|
126 |
+
09/30/2023 03:46:48 - INFO - __main__ - ***** Running evaluation *****
|
127 |
+
09/30/2023 03:46:48 - INFO - __main__ - Num examples = 10000
|
128 |
+
09/30/2023 03:46:48 - INFO - __main__ - Batch size = 32
|
129 |
+
09/30/2023 03:51:06 - INFO - __main__ - ***** Eval results *****
|
130 |
+
09/30/2023 03:51:06 - INFO - __main__ - acc = 0.8019
|
131 |
+
09/30/2023 03:51:36 - INFO - __main__ - Saving model checkpoint to output/Output_ATOMIC-pseudo-wWC/car_2i/deberta-v3-large_car_2i_name_100k_seed_101_5e-6
|
132 |
+
09/30/2023 03:55:37 - INFO - __main__ - global_step = 2450, average loss = 0.0904800341839109
|
133 |
+
09/30/2023 03:59:49 - INFO - __main__ - global_step = 2500, average loss = 0.09749648973207513
|
134 |
+
09/30/2023 04:04:09 - INFO - __main__ - global_step = 2550, average loss = 0.09015977876108082
|
135 |
+
09/30/2023 04:08:36 - INFO - __main__ - global_step = 2600, average loss = 0.11385933604056846
|
136 |
+
09/30/2023 04:08:37 - INFO - __main__ - ***** Running evaluation *****
|
137 |
+
09/30/2023 04:08:37 - INFO - __main__ - Num examples = 10000
|
138 |
+
09/30/2023 04:08:37 - INFO - __main__ - Batch size = 32
|
139 |
+
09/30/2023 04:12:54 - INFO - __main__ - ***** Eval results *****
|
140 |
+
09/30/2023 04:12:54 - INFO - __main__ - acc = 0.8079
|
141 |
+
09/30/2023 04:13:24 - INFO - __main__ - Saving model checkpoint to output/Output_ATOMIC-pseudo-wWC/car_2i/deberta-v3-large_car_2i_name_100k_seed_101_5e-6
|
142 |
+
09/30/2023 04:17:30 - INFO - __main__ - global_step = 2650, average loss = 0.09506087936344557
|
143 |
+
09/30/2023 04:21:44 - INFO - __main__ - global_step = 2700, average loss = 0.09819057766188052
|
144 |
+
09/30/2023 04:25:56 - INFO - __main__ - global_step = 2750, average loss = 0.09318019706217456
|
145 |
+
09/30/2023 04:30:01 - INFO - __main__ - global_step = 2800, average loss = 0.08744580631115241
|
146 |
+
09/30/2023 04:30:02 - INFO - __main__ - ***** Running evaluation *****
|
147 |
+
09/30/2023 04:30:02 - INFO - __main__ - Num examples = 10000
|
148 |
+
09/30/2023 04:30:02 - INFO - __main__ - Batch size = 32
|
149 |
+
09/30/2023 04:34:20 - INFO - __main__ - ***** Eval results *****
|
150 |
+
09/30/2023 04:34:20 - INFO - __main__ - acc = 0.8088
|
151 |
+
09/30/2023 04:34:50 - INFO - __main__ - Saving model checkpoint to output/Output_ATOMIC-pseudo-wWC/car_2i/deberta-v3-large_car_2i_name_100k_seed_101_5e-6
|
152 |
+
09/30/2023 04:39:07 - INFO - __main__ - global_step = 2850, average loss = 0.10302798340337177
|
153 |
+
09/30/2023 04:43:20 - INFO - __main__ - global_step = 2900, average loss = 0.09180921425198903
|
154 |
+
09/30/2023 04:47:38 - INFO - __main__ - global_step = 2950, average loss = 0.09286653973598731
|
155 |
+
09/30/2023 04:52:11 - INFO - __main__ - global_step = 3000, average loss = 0.09590554324422555
|
156 |
+
09/30/2023 04:52:12 - INFO - __main__ - ***** Running evaluation *****
|
157 |
+
09/30/2023 04:52:12 - INFO - __main__ - Num examples = 10000
|
158 |
+
09/30/2023 04:52:12 - INFO - __main__ - Batch size = 32
|
159 |
+
09/30/2023 04:56:30 - INFO - __main__ - ***** Eval results *****
|
160 |
+
09/30/2023 04:56:30 - INFO - __main__ - acc = 0.8082
|
161 |
+
09/30/2023 05:00:20 - INFO - __main__ - global_step = 3050, average loss = 0.0994117746003758
|
162 |
+
09/30/2023 05:04:34 - INFO - __main__ - global_step = 3100, average loss = 0.08591548198470264
|
163 |
+
09/30/2023 05:09:00 - INFO - __main__ - global_step = 3150, average loss = 0.09913339292746969
|
164 |
+
09/30/2023 05:13:29 - INFO - __main__ - global_step = 3200, average loss = 0.09553639550766092
|
165 |
+
09/30/2023 05:13:29 - INFO - __main__ - ***** Running evaluation *****
|
166 |
+
09/30/2023 05:13:29 - INFO - __main__ - Num examples = 10000
|
167 |
+
09/30/2023 05:13:29 - INFO - __main__ - Batch size = 32
|
168 |
+
09/30/2023 05:17:46 - INFO - __main__ - ***** Eval results *****
|
169 |
+
09/30/2023 05:17:46 - INFO - __main__ - acc = 0.8013
|
170 |
+
09/30/2023 05:21:55 - INFO - __main__ - global_step = 3250, average loss = 0.0932181820196638
|
171 |
+
09/30/2023 05:25:59 - INFO - __main__ - global_step = 3300, average loss = 0.08498929560689703
|
172 |
+
09/30/2023 05:30:21 - INFO - __main__ - global_step = 3350, average loss = 0.10022641647228739
|
173 |
+
09/30/2023 05:34:47 - INFO - __main__ - global_step = 3400, average loss = 0.08711659569285984
|
174 |
+
09/30/2023 05:34:47 - INFO - __main__ - ***** Running evaluation *****
|
175 |
+
09/30/2023 05:34:47 - INFO - __main__ - Num examples = 10000
|
176 |
+
09/30/2023 05:34:47 - INFO - __main__ - Batch size = 32
|
177 |
+
09/30/2023 05:39:06 - INFO - __main__ - ***** Eval results *****
|
178 |
+
09/30/2023 05:39:06 - INFO - __main__ - acc = 0.8085
|
179 |
+
09/30/2023 05:43:04 - INFO - __main__ - global_step = 3450, average loss = 0.08860307957234909
|
180 |
+
09/30/2023 05:47:15 - INFO - __main__ - global_step = 3500, average loss = 0.09122671313540195
|
181 |
+
09/30/2023 05:51:40 - INFO - __main__ - global_step = 3550, average loss = 0.09726192618174537
|
182 |
+
09/30/2023 05:56:06 - INFO - __main__ - global_step = 3600, average loss = 0.09295479882246582
|
183 |
+
09/30/2023 05:56:07 - INFO - __main__ - ***** Running evaluation *****
|
184 |
+
09/30/2023 05:56:07 - INFO - __main__ - Num examples = 10000
|
185 |
+
09/30/2023 05:56:07 - INFO - __main__ - Batch size = 32
|
186 |
+
09/30/2023 06:00:25 - INFO - __main__ - ***** Eval results *****
|
187 |
+
09/30/2023 06:00:25 - INFO - __main__ - acc = 0.7981
|
188 |
+
09/30/2023 06:04:25 - INFO - __main__ - global_step = 3650, average loss = 0.0850781474460382
|
189 |
+
09/30/2023 06:08:29 - INFO - __main__ - global_step = 3700, average loss = 0.08510007355012932
|
190 |
+
09/30/2023 06:12:45 - INFO - __main__ - global_step = 3750, average loss = 0.09091129492127947
|
191 |
+
09/30/2023 06:17:00 - INFO - __main__ - global_step = 3800, average loss = 0.08938177831689245
|
192 |
+
09/30/2023 06:17:01 - INFO - __main__ - ***** Running evaluation *****
|
193 |
+
09/30/2023 06:17:01 - INFO - __main__ - Num examples = 10000
|
194 |
+
09/30/2023 06:17:01 - INFO - __main__ - Batch size = 32
|
195 |
+
09/30/2023 06:21:19 - INFO - __main__ - ***** Eval results *****
|
196 |
+
09/30/2023 06:21:19 - INFO - __main__ - acc = 0.8008
|
197 |
+
09/30/2023 06:25:31 - INFO - __main__ - global_step = 3850, average loss = 0.09504610720792699
|
198 |
+
09/30/2023 06:29:46 - INFO - __main__ - global_step = 3900, average loss = 0.0801623915314849
|
199 |
+
09/30/2023 06:34:06 - INFO - __main__ - global_step = 3950, average loss = 0.08579662030970212
|
200 |
+
09/30/2023 06:38:28 - INFO - __main__ - global_step = 4000, average loss = 0.09399219373066443
|
201 |
+
09/30/2023 06:38:29 - INFO - __main__ - ***** Running evaluation *****
|
202 |
+
09/30/2023 06:38:29 - INFO - __main__ - Num examples = 10000
|
203 |
+
09/30/2023 06:38:29 - INFO - __main__ - Batch size = 32
|
204 |
+
09/30/2023 06:42:47 - INFO - __main__ - ***** Eval results *****
|
205 |
+
09/30/2023 06:42:47 - INFO - __main__ - acc = 0.8075
|
206 |
+
09/30/2023 06:46:50 - INFO - __main__ - global_step = 4050, average loss = 0.07777188256899535
|
207 |
+
09/30/2023 06:51:06 - INFO - __main__ - global_step = 4100, average loss = 0.09610467369071557
|
208 |
+
09/30/2023 06:55:28 - INFO - __main__ - global_step = 4150, average loss = 0.08811031442368403
|
209 |
+
09/30/2023 07:00:00 - INFO - __main__ - global_step = 4200, average loss = 0.08664546085885377
|
210 |
+
09/30/2023 07:00:01 - INFO - __main__ - ***** Running evaluation *****
|
211 |
+
09/30/2023 07:00:01 - INFO - __main__ - Num examples = 10000
|
212 |
+
09/30/2023 07:00:01 - INFO - __main__ - Batch size = 32
|
213 |
+
09/30/2023 07:04:19 - INFO - __main__ - ***** Eval results *****
|
214 |
+
09/30/2023 07:04:19 - INFO - __main__ - acc = 0.8193
|
215 |
+
09/30/2023 07:04:50 - INFO - __main__ - Saving model checkpoint to output/Output_ATOMIC-pseudo-wWC/car_2i/deberta-v3-large_car_2i_name_100k_seed_101_5e-6
|
216 |
+
09/30/2023 07:09:00 - INFO - __main__ - global_step = 4250, average loss = 0.0982984783052234
|
217 |
+
09/30/2023 07:13:25 - INFO - __main__ - global_step = 4300, average loss = 0.08057821323724056
|
218 |
+
09/30/2023 07:17:51 - INFO - __main__ - global_step = 4350, average loss = 0.08660443297441817
|
219 |
+
09/30/2023 07:22:18 - INFO - __main__ - global_step = 4400, average loss = 0.09301655420538736
|
220 |
+
09/30/2023 07:22:19 - INFO - __main__ - ***** Running evaluation *****
|
221 |
+
09/30/2023 07:22:19 - INFO - __main__ - Num examples = 10000
|
222 |
+
09/30/2023 07:22:19 - INFO - __main__ - Batch size = 32
|
223 |
+
09/30/2023 07:26:36 - INFO - __main__ - ***** Eval results *****
|
224 |
+
09/30/2023 07:26:36 - INFO - __main__ - acc = 0.8113
|
225 |
+
09/30/2023 07:30:33 - INFO - __main__ - global_step = 4450, average loss = 0.08599573986270116
|
226 |
+
09/30/2023 07:34:39 - INFO - __main__ - global_step = 4500, average loss = 0.08530666312639369
|
227 |
+
09/30/2023 07:38:48 - INFO - __main__ - global_step = 4550, average loss = 0.0846066818782856
|
228 |
+
09/30/2023 07:43:20 - INFO - __main__ - global_step = 4600, average loss = 0.0817996960383789
|
229 |
+
09/30/2023 07:43:21 - INFO - __main__ - ***** Running evaluation *****
|
230 |
+
09/30/2023 07:43:21 - INFO - __main__ - Num examples = 10000
|
231 |
+
09/30/2023 07:43:21 - INFO - __main__ - Batch size = 32
|
232 |
+
09/30/2023 07:47:39 - INFO - __main__ - ***** Eval results *****
|
233 |
+
09/30/2023 07:47:39 - INFO - __main__ - acc = 0.82
|
234 |
+
09/30/2023 07:48:09 - INFO - __main__ - Saving model checkpoint to output/Output_ATOMIC-pseudo-wWC/car_2i/deberta-v3-large_car_2i_name_100k_seed_101_5e-6
|
235 |
+
09/30/2023 07:52:15 - INFO - __main__ - global_step = 4650, average loss = 0.09457363621040712
|
236 |
+
09/30/2023 07:56:34 - INFO - __main__ - global_step = 4700, average loss = 0.09125612366977293
|
237 |
+
09/30/2023 08:01:01 - INFO - __main__ - global_step = 4750, average loss = 0.08600258652179037
|
238 |
+
09/30/2023 08:05:26 - INFO - __main__ - global_step = 4800, average loss = 0.09128527461645718
|
239 |
+
09/30/2023 08:05:26 - INFO - __main__ - ***** Running evaluation *****
|
240 |
+
09/30/2023 08:05:26 - INFO - __main__ - Num examples = 10000
|
241 |
+
09/30/2023 08:05:26 - INFO - __main__ - Batch size = 32
|
242 |
+
09/30/2023 08:09:45 - INFO - __main__ - ***** Eval results *****
|
243 |
+
09/30/2023 08:09:45 - INFO - __main__ - acc = 0.8151
|
244 |
+
09/30/2023 08:13:38 - INFO - __main__ - global_step = 4850, average loss = 0.09068508470605594
|
245 |
+
09/30/2023 08:17:36 - INFO - __main__ - global_step = 4900, average loss = 0.08361487613161443
|
246 |
+
09/30/2023 08:21:45 - INFO - __main__ - global_step = 4950, average loss = 0.09231334731652169
|
247 |
+
09/30/2023 08:26:13 - INFO - __main__ - global_step = 5000, average loss = 0.09210781741610845
|
248 |
+
09/30/2023 08:26:13 - INFO - __main__ - ***** Running evaluation *****
|
249 |
+
09/30/2023 08:26:13 - INFO - __main__ - Num examples = 10000
|
250 |
+
09/30/2023 08:26:13 - INFO - __main__ - Batch size = 32
|
251 |
+
09/30/2023 08:30:31 - INFO - __main__ - ***** Eval results *****
|
252 |
+
09/30/2023 08:30:31 - INFO - __main__ - acc = 0.8182
|
253 |
+
09/30/2023 08:34:31 - INFO - __main__ - global_step = 5050, average loss = 0.0987089884125453
|
254 |
+
09/30/2023 08:38:41 - INFO - __main__ - global_step = 5100, average loss = 0.08649987229902763
|
255 |
+
09/30/2023 08:43:07 - INFO - __main__ - global_step = 5150, average loss = 0.08150071838943404
|
256 |
+
09/30/2023 08:47:36 - INFO - __main__ - global_step = 5200, average loss = 0.09248840492458839
|
257 |
+
09/30/2023 08:47:36 - INFO - __main__ - ***** Running evaluation *****
|
258 |
+
09/30/2023 08:47:36 - INFO - __main__ - Num examples = 10000
|
259 |
+
09/30/2023 08:47:36 - INFO - __main__ - Batch size = 32
|
260 |
+
09/30/2023 08:51:54 - INFO - __main__ - ***** Eval results *****
|
261 |
+
09/30/2023 08:51:54 - INFO - __main__ - acc = 0.8098
|
262 |
+
09/30/2023 08:56:07 - INFO - __main__ - global_step = 5250, average loss = 0.08664297451652601
|
263 |
+
09/30/2023 09:00:14 - INFO - __main__ - global_step = 5300, average loss = 0.0810040804851451
|
264 |
+
09/30/2023 09:04:19 - INFO - __main__ - global_step = 5350, average loss = 0.08586231906258035
|
265 |
+
09/30/2023 09:08:41 - INFO - __main__ - global_step = 5400, average loss = 0.06912091931983014
|
266 |
+
09/30/2023 09:08:41 - INFO - __main__ - ***** Running evaluation *****
|
267 |
+
09/30/2023 09:08:41 - INFO - __main__ - Num examples = 10000
|
268 |
+
09/30/2023 09:08:41 - INFO - __main__ - Batch size = 32
|
269 |
+
09/30/2023 09:12:59 - INFO - __main__ - ***** Eval results *****
|
270 |
+
09/30/2023 09:12:59 - INFO - __main__ - acc = 0.8138
|
271 |
+
09/30/2023 09:17:04 - INFO - __main__ - global_step = 5450, average loss = 0.08094093154666553
|
272 |
+
09/30/2023 09:21:20 - INFO - __main__ - global_step = 5500, average loss = 0.08313021952490089
|
273 |
+
09/30/2023 09:25:34 - INFO - __main__ - global_step = 5550, average loss = 0.08020198410889862
|
274 |
+
09/30/2023 09:30:01 - INFO - __main__ - global_step = 5600, average loss = 0.08213623003844987
|
275 |
+
09/30/2023 09:30:01 - INFO - __main__ - ***** Running evaluation *****
|
276 |
+
09/30/2023 09:30:01 - INFO - __main__ - Num examples = 10000
|
277 |
+
09/30/2023 09:30:01 - INFO - __main__ - Batch size = 32
|
278 |
+
09/30/2023 09:34:19 - INFO - __main__ - ***** Eval results *****
|
279 |
+
09/30/2023 09:34:19 - INFO - __main__ - acc = 0.8138
|
280 |
+
09/30/2023 09:38:25 - INFO - __main__ - global_step = 5650, average loss = 0.0817357241499849
|
281 |
+
09/30/2023 09:42:30 - INFO - __main__ - global_step = 5700, average loss = 0.07617272696845248
|
282 |
+
09/30/2023 09:46:47 - INFO - __main__ - global_step = 5750, average loss = 0.08003306837461423
|
283 |
+
09/30/2023 09:51:07 - INFO - __main__ - global_step = 5800, average loss = 0.08461861441275687
|
284 |
+
09/30/2023 09:51:07 - INFO - __main__ - ***** Running evaluation *****
|
285 |
+
09/30/2023 09:51:07 - INFO - __main__ - Num examples = 10000
|
286 |
+
09/30/2023 09:51:07 - INFO - __main__ - Batch size = 32
|
287 |
+
09/30/2023 09:55:24 - INFO - __main__ - ***** Eval results *****
|
288 |
+
09/30/2023 09:55:24 - INFO - __main__ - acc = 0.819
|
289 |
+
09/30/2023 09:59:31 - INFO - __main__ - global_step = 5850, average loss = 0.0827079386992773
|
290 |
+
09/30/2023 10:03:45 - INFO - __main__ - global_step = 5900, average loss = 0.09033509934786707
|
291 |
+
09/30/2023 10:08:04 - INFO - __main__ - global_step = 5950, average loss = 0.08679367909935536
|
292 |
+
09/30/2023 10:12:29 - INFO - __main__ - global_step = 6000, average loss = 0.0677787430045646
|
293 |
+
09/30/2023 10:12:30 - INFO - __main__ - ***** Running evaluation *****
|
294 |
+
09/30/2023 10:12:30 - INFO - __main__ - Num examples = 10000
|
295 |
+
09/30/2023 10:12:30 - INFO - __main__ - Batch size = 32
|
296 |
+
09/30/2023 10:16:48 - INFO - __main__ - ***** Eval results *****
|
297 |
+
09/30/2023 10:16:48 - INFO - __main__ - acc = 0.793
|
298 |
+
09/30/2023 10:20:46 - INFO - __main__ - global_step = 6050, average loss = 0.07449474892706348
|
299 |
+
09/30/2023 10:24:57 - INFO - __main__ - global_step = 6100, average loss = 0.08253852118214126
|
300 |
+
09/30/2023 10:29:21 - INFO - __main__ - global_step = 6150, average loss = 0.07779288738580363
|
301 |
+
09/30/2023 10:33:50 - INFO - __main__ - global_step = 6200, average loss = 0.08415637877900735
|
302 |
+
09/30/2023 10:33:51 - INFO - __main__ - ***** Running evaluation *****
|
303 |
+
09/30/2023 10:33:51 - INFO - __main__ - Num examples = 10000
|
304 |
+
09/30/2023 10:33:51 - INFO - __main__ - Batch size = 32
|
305 |
+
09/30/2023 10:38:09 - INFO - __main__ - ***** Eval results *****
|
306 |
+
09/30/2023 10:38:09 - INFO - __main__ - acc = 0.8152
|
307 |
+
09/30/2023 10:42:10 - INFO - __main__ - global_step = 6250, average loss = 0.0836084969737567
|
308 |
+
09/30/2023 10:46:22 - INFO - __main__ - global_step = 6300, average loss = 0.09385589220066322
|
309 |
+
09/30/2023 10:50:35 - INFO - __main__ - global_step = 6350, average loss = 0.09158665712571747
|
310 |
+
09/30/2023 10:55:02 - INFO - __main__ - global_step = 6400, average loss = 0.0775194574438865
|
311 |
+
09/30/2023 10:55:03 - INFO - __main__ - ***** Running evaluation *****
|
312 |
+
09/30/2023 10:55:03 - INFO - __main__ - Num examples = 10000
|
313 |
+
09/30/2023 10:55:03 - INFO - __main__ - Batch size = 32
|
314 |
+
09/30/2023 10:59:20 - INFO - __main__ - ***** Eval results *****
|
315 |
+
09/30/2023 10:59:20 - INFO - __main__ - acc = 0.8155
|
316 |
+
09/30/2023 11:03:28 - INFO - __main__ - global_step = 6450, average loss = 0.08119687895305105
|
317 |
+
09/30/2023 11:07:51 - INFO - __main__ - global_step = 6500, average loss = 0.07420433169674652
|
318 |
+
09/30/2023 11:12:28 - INFO - __main__ - global_step = 6550, average loss = 0.06907126017362315
|
319 |
+
09/30/2023 11:16:58 - INFO - __main__ - global_step = 6600, average loss = 0.07694708627823274
|
320 |
+
09/30/2023 11:16:58 - INFO - __main__ - ***** Running evaluation *****
|
321 |
+
09/30/2023 11:16:58 - INFO - __main__ - Num examples = 10000
|
322 |
+
09/30/2023 11:16:58 - INFO - __main__ - Batch size = 32
|
323 |
+
09/30/2023 11:21:17 - INFO - __main__ - ***** Eval results *****
|
324 |
+
09/30/2023 11:21:17 - INFO - __main__ - acc = 0.8118
|
325 |
+
09/30/2023 11:25:39 - INFO - __main__ - global_step = 6650, average loss = 0.07814562884639599
|
326 |
+
09/30/2023 11:30:08 - INFO - __main__ - global_step = 6700, average loss = 0.08736841517616994
|
327 |
+
09/30/2023 11:34:35 - INFO - __main__ - global_step = 6750, average loss = 0.08082478447904577
|
328 |
+
09/30/2023 11:39:03 - INFO - __main__ - global_step = 6800, average loss = 0.07488631383661414
|
329 |
+
09/30/2023 11:39:04 - INFO - __main__ - ***** Running evaluation *****
|
330 |
+
09/30/2023 11:39:04 - INFO - __main__ - Num examples = 10000
|
331 |
+
09/30/2023 11:39:04 - INFO - __main__ - Batch size = 32
|
332 |
+
09/30/2023 11:43:23 - INFO - __main__ - ***** Eval results *****
|
333 |
+
09/30/2023 11:43:23 - INFO - __main__ - acc = 0.8213
|
334 |
+
09/30/2023 11:43:49 - INFO - __main__ - Saving model checkpoint to output/Output_ATOMIC-pseudo-wWC/car_2i/deberta-v3-large_car_2i_name_100k_seed_101_5e-6
|
335 |
+
09/30/2023 11:47:44 - INFO - __main__ - global_step = 6850, average loss = 0.08088931010104716
|
336 |
+
09/30/2023 11:51:57 - INFO - __main__ - global_step = 6900, average loss = 0.07495710194933053
|
337 |
+
09/30/2023 11:56:20 - INFO - __main__ - global_step = 6950, average loss = 0.08142732598964358
|
338 |
+
09/30/2023 12:00:40 - INFO - __main__ - global_step = 7000, average loss = 0.08055740728428645
|
339 |
+
09/30/2023 12:00:41 - INFO - __main__ - ***** Running evaluation *****
|
340 |
+
09/30/2023 12:00:41 - INFO - __main__ - Num examples = 10000
|
341 |
+
09/30/2023 12:00:41 - INFO - __main__ - Batch size = 32
|
342 |
+
09/30/2023 12:04:58 - INFO - __main__ - ***** Eval results *****
|
343 |
+
09/30/2023 12:04:58 - INFO - __main__ - acc = 0.8081
|
344 |
+
09/30/2023 12:08:49 - INFO - __main__ - global_step = 7050, average loss = 0.08094024127516604
|
345 |
+
09/30/2023 12:13:05 - INFO - __main__ - global_step = 7100, average loss = 0.08965814252063865
|
346 |
+
09/30/2023 12:17:22 - INFO - __main__ - global_step = 7150, average loss = 0.07722920090716798
|
347 |
+
09/30/2023 12:21:45 - INFO - __main__ - global_step = 7200, average loss = 0.08899519631431758
|
348 |
+
09/30/2023 12:21:46 - INFO - __main__ - ***** Running evaluation *****
|
349 |
+
09/30/2023 12:21:46 - INFO - __main__ - Num examples = 10000
|
350 |
+
09/30/2023 12:21:46 - INFO - __main__ - Batch size = 32
|
351 |
+
09/30/2023 12:26:05 - INFO - __main__ - ***** Eval results *****
|
352 |
+
09/30/2023 12:26:05 - INFO - __main__ - acc = 0.8124
|
353 |
+
09/30/2023 12:30:21 - INFO - __main__ - global_step = 7250, average loss = 0.06652378371007217
|
354 |
+
09/30/2023 12:34:39 - INFO - __main__ - global_step = 7300, average loss = 0.07190304783754982
|
355 |
+
09/30/2023 12:39:04 - INFO - __main__ - global_step = 7350, average loss = 0.07759228288079612
|
356 |
+
09/30/2023 12:43:26 - INFO - __main__ - global_step = 7400, average loss = 0.07959542326259907
|
357 |
+
09/30/2023 12:43:27 - INFO - __main__ - ***** Running evaluation *****
|
358 |
+
09/30/2023 12:43:27 - INFO - __main__ - Num examples = 10000
|
359 |
+
09/30/2023 12:43:27 - INFO - __main__ - Batch size = 32
|
360 |
+
09/30/2023 12:47:45 - INFO - __main__ - ***** Eval results *****
|
361 |
+
09/30/2023 12:47:45 - INFO - __main__ - acc = 0.8246
|
362 |
+
09/30/2023 12:48:12 - INFO - __main__ - Saving model checkpoint to output/Output_ATOMIC-pseudo-wWC/car_2i/deberta-v3-large_car_2i_name_100k_seed_101_5e-6
|
363 |
+
09/30/2023 12:52:13 - INFO - __main__ - global_step = 7450, average loss = 0.07954016777908691
|
364 |
+
09/30/2023 12:56:27 - INFO - __main__ - global_step = 7500, average loss = 0.06745836471483926
|
365 |
+
09/30/2023 13:00:43 - INFO - __main__ - global_step = 7550, average loss = 0.07651237843449053
|
366 |
+
09/30/2023 13:04:59 - INFO - __main__ - global_step = 7600, average loss = 0.08067735946224275
|
367 |
+
09/30/2023 13:05:00 - INFO - __main__ - ***** Running evaluation *****
|
368 |
+
09/30/2023 13:05:00 - INFO - __main__ - Num examples = 10000
|
369 |
+
09/30/2023 13:05:00 - INFO - __main__ - Batch size = 32
|
370 |
+
09/30/2023 13:09:19 - INFO - __main__ - ***** Eval results *****
|
371 |
+
09/30/2023 13:09:19 - INFO - __main__ - acc = 0.8296
|
372 |
+
09/30/2023 13:09:45 - INFO - __main__ - Saving model checkpoint to output/Output_ATOMIC-pseudo-wWC/car_2i/deberta-v3-large_car_2i_name_100k_seed_101_5e-6
|
373 |
+
09/30/2023 13:13:52 - INFO - __main__ - global_step = 7650, average loss = 0.07473264377593296
|
374 |
+
09/30/2023 13:18:02 - INFO - __main__ - global_step = 7700, average loss = 0.07815635729657515
|
375 |
+
09/30/2023 13:22:14 - INFO - __main__ - global_step = 7750, average loss = 0.08072268578209332
|
376 |
+
09/30/2023 13:26:29 - INFO - __main__ - global_step = 7800, average loss = 0.0779763015091885
|
377 |
+
09/30/2023 13:26:30 - INFO - __main__ - ***** Running evaluation *****
|
378 |
+
09/30/2023 13:26:30 - INFO - __main__ - Num examples = 10000
|
379 |
+
09/30/2023 13:26:30 - INFO - __main__ - Batch size = 32
|
380 |
+
09/30/2023 13:30:49 - INFO - __main__ - ***** Eval results *****
|
381 |
+
09/30/2023 13:30:49 - INFO - __main__ - acc = 0.8052
|
382 |
+
09/30/2023 13:34:56 - INFO - __main__ - global_step = 7850, average loss = 0.08846644978621043
|
383 |
+
09/30/2023 13:39:08 - INFO - __main__ - global_step = 7900, average loss = 0.08965322268464661
|
384 |
+
09/30/2023 13:43:18 - INFO - __main__ - global_step = 7950, average loss = 0.07646228883138974
|
385 |
+
09/30/2023 13:47:34 - INFO - __main__ - global_step = 8000, average loss = 0.06746727024801658
|
386 |
+
09/30/2023 13:47:35 - INFO - __main__ - ***** Running evaluation *****
|
387 |
+
09/30/2023 13:47:35 - INFO - __main__ - Num examples = 10000
|
388 |
+
09/30/2023 13:47:35 - INFO - __main__ - Batch size = 32
|
389 |
+
09/30/2023 13:51:54 - INFO - __main__ - ***** Eval results *****
|
390 |
+
09/30/2023 13:51:54 - INFO - __main__ - acc = 0.8243
|
391 |
+
09/30/2023 13:56:06 - INFO - __main__ - global_step = 8050, average loss = 0.08350399916278547
|
392 |
+
09/30/2023 14:00:19 - INFO - __main__ - global_step = 8100, average loss = 0.06798540580417466
|
393 |
+
09/30/2023 14:04:46 - INFO - __main__ - global_step = 8150, average loss = 0.06554304141827742
|
394 |
+
09/30/2023 14:09:04 - INFO - __main__ - global_step = 8200, average loss = 0.06514280185193229
|
395 |
+
09/30/2023 14:09:05 - INFO - __main__ - ***** Running evaluation *****
|
396 |
+
09/30/2023 14:09:05 - INFO - __main__ - Num examples = 10000
|
397 |
+
09/30/2023 14:09:05 - INFO - __main__ - Batch size = 32
|
398 |
+
09/30/2023 14:13:23 - INFO - __main__ - ***** Eval results *****
|
399 |
+
09/30/2023 14:13:23 - INFO - __main__ - acc = 0.8146
|
400 |
+
09/30/2023 14:17:36 - INFO - __main__ - global_step = 8250, average loss = 0.07990871949750726
|
401 |
+
09/30/2023 14:21:47 - INFO - __main__ - global_step = 8300, average loss = 0.07364155332470546
|
402 |
+
09/30/2023 14:25:52 - INFO - __main__ - global_step = 8350, average loss = 0.08377082656683342
|
403 |
+
09/30/2023 14:30:12 - INFO - __main__ - global_step = 8400, average loss = 0.07954915106311092
|
404 |
+
09/30/2023 14:30:13 - INFO - __main__ - ***** Running evaluation *****
|
405 |
+
09/30/2023 14:30:13 - INFO - __main__ - Num examples = 10000
|
406 |
+
09/30/2023 14:30:13 - INFO - __main__ - Batch size = 32
|
407 |
+
09/30/2023 14:34:32 - INFO - __main__ - ***** Eval results *****
|
408 |
+
09/30/2023 14:34:32 - INFO - __main__ - acc = 0.8148
|
409 |
+
09/30/2023 14:38:42 - INFO - __main__ - global_step = 8450, average loss = 0.07030039706209208
|
410 |
+
09/30/2023 14:42:55 - INFO - __main__ - global_step = 8500, average loss = 0.08003189989045495
|
411 |
+
09/30/2023 14:47:10 - INFO - __main__ - global_step = 8550, average loss = 0.07293609037540591
|
412 |
+
09/30/2023 14:51:25 - INFO - __main__ - global_step = 8600, average loss = 0.07146468496641319
|
413 |
+
09/30/2023 14:51:25 - INFO - __main__ - ***** Running evaluation *****
|
414 |
+
09/30/2023 14:51:25 - INFO - __main__ - Num examples = 10000
|
415 |
+
09/30/2023 14:51:25 - INFO - __main__ - Batch size = 32
|
416 |
+
09/30/2023 14:55:43 - INFO - __main__ - ***** Eval results *****
|
417 |
+
09/30/2023 14:55:43 - INFO - __main__ - acc = 0.8119
|
418 |
+
09/30/2023 14:59:48 - INFO - __main__ - global_step = 8650, average loss = 0.08003535972715327
|
419 |
+
09/30/2023 15:03:55 - INFO - __main__ - global_step = 8700, average loss = 0.06597046624192444
|
420 |
+
09/30/2023 15:08:18 - INFO - __main__ - global_step = 8750, average loss = 0.07181154116915422
|
421 |
+
09/30/2023 15:12:39 - INFO - __main__ - global_step = 8800, average loss = 0.068559150480869
|
422 |
+
09/30/2023 15:12:40 - INFO - __main__ - ***** Running evaluation *****
|
423 |
+
09/30/2023 15:12:40 - INFO - __main__ - Num examples = 10000
|
424 |
+
09/30/2023 15:12:40 - INFO - __main__ - Batch size = 32
|
425 |
+
09/30/2023 15:16:57 - INFO - __main__ - ***** Eval results *****
|
426 |
+
09/30/2023 15:16:57 - INFO - __main__ - acc = 0.8027
|
427 |
+
09/30/2023 15:20:57 - INFO - __main__ - global_step = 8850, average loss = 0.08192624930914462
|
428 |
+
09/30/2023 15:25:08 - INFO - __main__ - global_step = 8900, average loss = 0.06891920362562814
|
429 |
+
09/30/2023 15:29:21 - INFO - __main__ - global_step = 8950, average loss = 0.07183136703236868
|
430 |
+
09/30/2023 15:33:32 - INFO - __main__ - global_step = 9000, average loss = 0.07862215217377524
|
431 |
+
09/30/2023 15:33:32 - INFO - __main__ - ***** Running evaluation *****
|
432 |
+
09/30/2023 15:33:32 - INFO - __main__ - Num examples = 10000
|
433 |
+
09/30/2023 15:33:32 - INFO - __main__ - Batch size = 32
|
434 |
+
09/30/2023 15:37:51 - INFO - __main__ - ***** Eval results *****
|
435 |
+
09/30/2023 15:37:51 - INFO - __main__ - acc = 0.8145
|
436 |
+
09/30/2023 15:42:00 - INFO - __main__ - global_step = 9050, average loss = 0.08039317954942816
|
437 |
+
09/30/2023 15:46:04 - INFO - __main__ - global_step = 9100, average loss = 0.07681855217753991
|
438 |
+
09/30/2023 15:50:19 - INFO - __main__ - global_step = 9150, average loss = 0.06908466021588539
|
439 |
+
09/30/2023 15:54:39 - INFO - __main__ - global_step = 9200, average loss = 0.07285123934067088
|
440 |
+
09/30/2023 15:54:40 - INFO - __main__ - ***** Running evaluation *****
|
441 |
+
09/30/2023 15:54:40 - INFO - __main__ - Num examples = 10000
|
442 |
+
09/30/2023 15:54:40 - INFO - __main__ - Batch size = 32
|
443 |
+
09/30/2023 15:58:58 - INFO - __main__ - ***** Eval results *****
|
444 |
+
09/30/2023 15:58:58 - INFO - __main__ - acc = 0.8157
|
445 |
+
09/30/2023 16:03:12 - INFO - __main__ - global_step = 9250, average loss = 0.07457796319955377
|
446 |
+
09/30/2023 16:07:29 - INFO - __main__ - global_step = 9300, average loss = 0.08509899367534672
|
447 |
+
09/30/2023 16:11:53 - INFO - __main__ - global_step = 9350, average loss = 0.07013603730166323
|
448 |
+
09/30/2023 16:16:21 - INFO - __main__ - global_step = 9400, average loss = 0.07017059165984392
|
449 |
+
09/30/2023 16:16:22 - INFO - __main__ - ***** Running evaluation *****
|
450 |
+
09/30/2023 16:16:22 - INFO - __main__ - Num examples = 10000
|
451 |
+
09/30/2023 16:16:22 - INFO - __main__ - Batch size = 32
|
452 |
+
09/30/2023 16:20:40 - INFO - __main__ - ***** Eval results *****
|
453 |
+
09/30/2023 16:20:40 - INFO - __main__ - acc = 0.8141
|
454 |
+
09/30/2023 16:24:51 - INFO - __main__ - global_step = 9450, average loss = 0.0831688746976215
|
455 |
+
09/30/2023 16:29:17 - INFO - __main__ - global_step = 9500, average loss = 0.08576202854252188
|
456 |
+
09/30/2023 16:33:37 - INFO - __main__ - global_step = 9550, average loss = 0.08213058317254764
|
457 |
+
09/30/2023 16:37:58 - INFO - __main__ - global_step = 9600, average loss = 0.072965028858016
|
458 |
+
09/30/2023 16:37:58 - INFO - __main__ - ***** Running evaluation *****
|
459 |
+
09/30/2023 16:37:58 - INFO - __main__ - Num examples = 10000
|
460 |
+
09/30/2023 16:37:58 - INFO - __main__ - Batch size = 32
|
461 |
+
09/30/2023 16:42:15 - INFO - __main__ - ***** Eval results *****
|
462 |
+
09/30/2023 16:42:15 - INFO - __main__ - acc = 0.8122
|
463 |
+
09/30/2023 16:46:15 - INFO - __main__ - global_step = 9650, average loss = 0.07125714480011083
|
464 |
+
09/30/2023 16:50:19 - INFO - __main__ - global_step = 9700, average loss = 0.07434062254025775
|
465 |
+
09/30/2023 16:54:30 - INFO - __main__ - global_step = 9750, average loss = 0.07218598224179004
|
466 |
+
09/30/2023 16:58:52 - INFO - __main__ - global_step = 9800, average loss = 0.06753908861952368
|
467 |
+
09/30/2023 16:58:52 - INFO - __main__ - ***** Running evaluation *****
|
468 |
+
09/30/2023 16:58:52 - INFO - __main__ - Num examples = 10000
|
469 |
+
09/30/2023 16:58:52 - INFO - __main__ - Batch size = 32
|
470 |
+
09/30/2023 17:03:10 - INFO - __main__ - ***** Eval results *****
|
471 |
+
09/30/2023 17:03:10 - INFO - __main__ - acc = 0.8208
|
472 |
+
09/30/2023 17:07:12 - INFO - __main__ - global_step = 9850, average loss = 0.0787789156648796
|
473 |
+
09/30/2023 17:11:24 - INFO - __main__ - global_step = 9900, average loss = 0.06863431145990034
|
474 |
+
09/30/2023 17:15:44 - INFO - __main__ - global_step = 9950, average loss = 0.0729100130192819
|
475 |
+
09/30/2023 17:20:01 - INFO - __main__ - global_step = 10000, average loss = 0.07118722895695101
|
476 |
+
09/30/2023 17:20:01 - INFO - __main__ - ***** Running evaluation *****
|
477 |
+
09/30/2023 17:20:01 - INFO - __main__ - Num examples = 10000
|
478 |
+
09/30/2023 17:20:01 - INFO - __main__ - Batch size = 32
|
479 |
+
09/30/2023 17:24:20 - INFO - __main__ - ***** Eval results *****
|
480 |
+
09/30/2023 17:24:20 - INFO - __main__ - acc = 0.8212
|
481 |
+
09/30/2023 17:28:25 - INFO - __main__ - global_step = 10050, average loss = 0.06967489041242515
|
482 |
+
09/30/2023 17:32:40 - INFO - __main__ - global_step = 10100, average loss = 0.07503812584323896
|
483 |
+
09/30/2023 17:37:07 - INFO - __main__ - global_step = 10150, average loss = 0.07984486830362585
|
484 |
+
09/30/2023 17:41:19 - INFO - __main__ - global_step = 10200, average loss = 0.06886661994401948
|
485 |
+
09/30/2023 17:41:19 - INFO - __main__ - ***** Running evaluation *****
|
486 |
+
09/30/2023 17:41:19 - INFO - __main__ - Num examples = 10000
|
487 |
+
09/30/2023 17:41:19 - INFO - __main__ - Batch size = 32
|
488 |
+
09/30/2023 17:45:37 - INFO - __main__ - ***** Eval results *****
|
489 |
+
09/30/2023 17:45:37 - INFO - __main__ - acc = 0.8134
|
490 |
+
09/30/2023 17:49:55 - INFO - __main__ - global_step = 10250, average loss = 0.07405807184350124
|
491 |
+
09/30/2023 17:54:14 - INFO - __main__ - global_step = 10300, average loss = 0.08030594819738326
|
492 |
+
09/30/2023 17:58:33 - INFO - __main__ - global_step = 10350, average loss = 0.08568550381663954
|
493 |
+
09/30/2023 18:02:39 - INFO - __main__ - global_step = 10400, average loss = 0.08110691699486779
|
494 |
+
09/30/2023 18:02:39 - INFO - __main__ - ***** Running evaluation *****
|
495 |
+
09/30/2023 18:02:39 - INFO - __main__ - Num examples = 10000
|
496 |
+
09/30/2023 18:02:39 - INFO - __main__ - Batch size = 32
|
497 |
+
09/30/2023 18:07:00 - INFO - __main__ - ***** Eval results *****
|
498 |
+
09/30/2023 18:07:00 - INFO - __main__ - acc = 0.8226
|
499 |
+
09/30/2023 18:10:59 - INFO - __main__ - global_step = 10450, average loss = 0.07698049577564234
|
500 |
+
09/30/2023 18:15:18 - INFO - __main__ - global_step = 10500, average loss = 0.07489776252514276
|
501 |
+
09/30/2023 18:19:38 - INFO - __main__ - global_step = 10550, average loss = 0.08084082975808997
|
502 |
+
09/30/2023 18:24:06 - INFO - __main__ - global_step = 10600, average loss = 0.077233616621088
|
503 |
+
09/30/2023 18:24:06 - INFO - __main__ - ***** Running evaluation *****
|
504 |
+
09/30/2023 18:24:06 - INFO - __main__ - Num examples = 10000
|
505 |
+
09/30/2023 18:24:06 - INFO - __main__ - Batch size = 32
|
506 |
+
09/30/2023 18:28:26 - INFO - __main__ - ***** Eval results *****
|
507 |
+
09/30/2023 18:28:26 - INFO - __main__ - acc = 0.8219
|
508 |
+
09/30/2023 18:32:23 - INFO - __main__ - global_step = 10650, average loss = 0.0749396042097942
|
509 |
+
09/30/2023 18:36:24 - INFO - __main__ - global_step = 10700, average loss = 0.07035453407006571
|
510 |
+
09/30/2023 18:40:30 - INFO - __main__ - global_step = 10750, average loss = 0.0701333080389304
|
511 |
+
09/30/2023 18:44:44 - INFO - __main__ - global_step = 10800, average loss = 0.06815460226869618
|
512 |
+
09/30/2023 18:44:45 - INFO - __main__ - ***** Running evaluation *****
|
513 |
+
09/30/2023 18:44:45 - INFO - __main__ - Num examples = 10000
|
514 |
+
09/30/2023 18:44:45 - INFO - __main__ - Batch size = 32
|
515 |
+
09/30/2023 18:49:04 - INFO - __main__ - ***** Eval results *****
|
516 |
+
09/30/2023 18:49:04 - INFO - __main__ - acc = 0.8246
|
517 |
+
09/30/2023 18:53:04 - INFO - __main__ - global_step = 10850, average loss = 0.06231740675430046
|
518 |
+
09/30/2023 18:57:11 - INFO - __main__ - global_step = 10900, average loss = 0.07749273380759406
|
519 |
+
09/30/2023 19:01:27 - INFO - __main__ - global_step = 10950, average loss = 0.07356921623417292
|
520 |
+
09/30/2023 19:05:44 - INFO - __main__ - global_step = 11000, average loss = 0.06861940244401922
|
521 |
+
09/30/2023 19:05:44 - INFO - __main__ - ***** Running evaluation *****
|
522 |
+
09/30/2023 19:05:44 - INFO - __main__ - Num examples = 10000
|
523 |
+
09/30/2023 19:05:44 - INFO - __main__ - Batch size = 32
|
524 |
+
09/30/2023 19:10:04 - INFO - __main__ - ***** Eval results *****
|
525 |
+
09/30/2023 19:10:04 - INFO - __main__ - acc = 0.8237
|
526 |
+
09/30/2023 19:13:58 - INFO - __main__ - global_step = 11050, average loss = 0.07190075869159046
|
527 |
+
09/30/2023 19:18:18 - INFO - __main__ - global_step = 11100, average loss = 0.07798185770014243
|
528 |
+
09/30/2023 19:22:25 - INFO - __main__ - global_step = 11150, average loss = 0.05461175944059505
|
529 |
+
09/30/2023 19:26:36 - INFO - __main__ - global_step = 11200, average loss = 0.07214928590841736
|
530 |
+
09/30/2023 19:26:36 - INFO - __main__ - ***** Running evaluation *****
|
531 |
+
09/30/2023 19:26:36 - INFO - __main__ - Num examples = 10000
|
532 |
+
09/30/2023 19:26:36 - INFO - __main__ - Batch size = 32
|
533 |
+
09/30/2023 19:30:56 - INFO - __main__ - ***** Eval results *****
|
534 |
+
09/30/2023 19:30:56 - INFO - __main__ - acc = 0.8281
|
535 |
+
09/30/2023 19:34:46 - INFO - __main__ - global_step = 11250, average loss = 0.07595877689196641
|
536 |
+
09/30/2023 19:38:51 - INFO - __main__ - global_step = 11300, average loss = 0.06289271867310163
|
537 |
+
09/30/2023 19:42:58 - INFO - __main__ - global_step = 11350, average loss = 0.07287138866693567
|
538 |
+
09/30/2023 19:47:05 - INFO - __main__ - global_step = 11400, average loss = 0.0736375573805708
|
539 |
+
09/30/2023 19:47:05 - INFO - __main__ - ***** Running evaluation *****
|
540 |
+
09/30/2023 19:47:05 - INFO - __main__ - Num examples = 10000
|
541 |
+
09/30/2023 19:47:05 - INFO - __main__ - Batch size = 32
|
542 |
+
09/30/2023 19:51:26 - INFO - __main__ - ***** Eval results *****
|
543 |
+
09/30/2023 19:51:26 - INFO - __main__ - acc = 0.8265
|
544 |
+
09/30/2023 19:55:14 - INFO - __main__ - global_step = 11450, average loss = 0.07105860608404328
|
545 |
+
09/30/2023 19:59:22 - INFO - __main__ - global_step = 11500, average loss = 0.07589100849851092
|
546 |
+
09/30/2023 20:03:31 - INFO - __main__ - global_step = 11550, average loss = 0.07193597211022279
|
547 |
+
09/30/2023 20:07:44 - INFO - __main__ - global_step = 11600, average loss = 0.0786158631305443
|
548 |
+
09/30/2023 20:07:45 - INFO - __main__ - ***** Running evaluation *****
|
549 |
+
09/30/2023 20:07:45 - INFO - __main__ - Num examples = 10000
|
550 |
+
09/30/2023 20:07:45 - INFO - __main__ - Batch size = 32
|
551 |
+
09/30/2023 20:12:05 - INFO - __main__ - ***** Eval results *****
|
552 |
+
09/30/2023 20:12:05 - INFO - __main__ - acc = 0.8224
|
553 |
+
09/30/2023 20:16:14 - INFO - __main__ - global_step = 11650, average loss = 0.07484395604304155
|
554 |
+
09/30/2023 20:20:16 - INFO - __main__ - global_step = 11700, average loss = 0.07182746810896788
|
555 |
+
09/30/2023 20:24:28 - INFO - __main__ - global_step = 11750, average loss = 0.06392118992527684
|
556 |
+
09/30/2023 20:28:47 - INFO - __main__ - global_step = 11800, average loss = 0.06359485059540021
|
557 |
+
09/30/2023 20:28:48 - INFO - __main__ - ***** Running evaluation *****
|
558 |
+
09/30/2023 20:28:48 - INFO - __main__ - Num examples = 10000
|
559 |
+
09/30/2023 20:28:48 - INFO - __main__ - Batch size = 32
|
560 |
+
09/30/2023 20:33:07 - INFO - __main__ - ***** Eval results *****
|
561 |
+
09/30/2023 20:33:07 - INFO - __main__ - acc = 0.8225
|
562 |
+
09/30/2023 20:36:55 - INFO - __main__ - global_step = 11850, average loss = 0.06557874951142367
|
563 |
+
09/30/2023 20:40:51 - INFO - __main__ - global_step = 11900, average loss = 0.06787695961887948
|
564 |
+
09/30/2023 20:45:01 - INFO - __main__ - global_step = 11950, average loss = 0.07802391385892406
|
565 |
+
09/30/2023 20:49:19 - INFO - __main__ - global_step = 12000, average loss = 0.062383338503277624
|
566 |
+
09/30/2023 20:49:19 - INFO - __main__ - ***** Running evaluation *****
|
567 |
+
09/30/2023 20:49:19 - INFO - __main__ - Num examples = 10000
|
568 |
+
09/30/2023 20:49:19 - INFO - __main__ - Batch size = 32
|
569 |
+
09/30/2023 20:53:41 - INFO - __main__ - ***** Eval results *****
|
570 |
+
09/30/2023 20:53:41 - INFO - __main__ - acc = 0.8221
|
571 |
+
09/30/2023 20:57:31 - INFO - __main__ - global_step = 12050, average loss = 0.07041985652205768
|
572 |
+
09/30/2023 21:01:33 - INFO - __main__ - global_step = 12100, average loss = 0.07904728068271652
|
573 |
+
09/30/2023 21:05:47 - INFO - __main__ - global_step = 12150, average loss = 0.07474817682654247
|
574 |
+
09/30/2023 21:09:58 - INFO - __main__ - global_step = 12200, average loss = 0.07402907914118259
|
575 |
+
09/30/2023 21:09:58 - INFO - __main__ - ***** Running evaluation *****
|
576 |
+
09/30/2023 21:09:58 - INFO - __main__ - Num examples = 10000
|
577 |
+
09/30/2023 21:09:58 - INFO - __main__ - Batch size = 32
|
578 |
+
09/30/2023 21:14:19 - INFO - __main__ - ***** Eval results *****
|
579 |
+
09/30/2023 21:14:19 - INFO - __main__ - acc = 0.8327
|
580 |
+
09/30/2023 21:14:46 - INFO - __main__ - Saving model checkpoint to output/Output_ATOMIC-pseudo-wWC/car_2i/deberta-v3-large_car_2i_name_100k_seed_101_5e-6
|
581 |
+
09/30/2023 21:18:46 - INFO - __main__ - global_step = 12250, average loss = 0.07039213450989337
|
582 |
+
09/30/2023 21:22:59 - INFO - __main__ - global_step = 12300, average loss = 0.0842395970186044
|
583 |
+
09/30/2023 21:27:05 - INFO - __main__ - global_step = 12350, average loss = 0.06603515204827999
|
584 |
+
09/30/2023 21:31:22 - INFO - __main__ - global_step = 12400, average loss = 0.06760421821546515
|
585 |
+
09/30/2023 21:31:22 - INFO - __main__ - ***** Running evaluation *****
|
586 |
+
09/30/2023 21:31:22 - INFO - __main__ - Num examples = 10000
|
587 |
+
09/30/2023 21:31:22 - INFO - __main__ - Batch size = 32
|
588 |
+
09/30/2023 21:35:43 - INFO - __main__ - ***** Eval results *****
|
589 |
+
09/30/2023 21:35:43 - INFO - __main__ - acc = 0.8208
|
590 |
+
09/30/2023 21:39:33 - INFO - __main__ - global_step = 12450, average loss = 0.06917047601906233
|
591 |
+
09/30/2023 21:43:44 - INFO - __main__ - global_step = 12500, average loss = 0.07573592953915068
|
592 |
+
09/30/2023 21:48:03 - INFO - __main__ - global_step = 12550, average loss = 0.06653125052485848
|
593 |
+
09/30/2023 21:52:22 - INFO - __main__ - global_step = 12600, average loss = 0.06815064429247286
|
594 |
+
09/30/2023 21:52:23 - INFO - __main__ - ***** Running evaluation *****
|
595 |
+
09/30/2023 21:52:23 - INFO - __main__ - Num examples = 10000
|
596 |
+
09/30/2023 21:52:23 - INFO - __main__ - Batch size = 32
|
597 |
+
09/30/2023 21:56:43 - INFO - __main__ - ***** Eval results *****
|
598 |
+
09/30/2023 21:56:43 - INFO - __main__ - acc = 0.819
|
599 |
+
09/30/2023 22:00:39 - INFO - __main__ - global_step = 12650, average loss = 0.07732899946378893
|
600 |
+
09/30/2023 22:04:44 - INFO - __main__ - global_step = 12700, average loss = 0.06547158910783764
|
601 |
+
09/30/2023 22:08:49 - INFO - __main__ - global_step = 12750, average loss = 0.0728905378174386
|
602 |
+
09/30/2023 22:13:03 - INFO - __main__ - global_step = 12800, average loss = 0.07366545890477937
|
603 |
+
09/30/2023 22:13:04 - INFO - __main__ - ***** Running evaluation *****
|
604 |
+
09/30/2023 22:13:04 - INFO - __main__ - Num examples = 10000
|
605 |
+
09/30/2023 22:13:04 - INFO - __main__ - Batch size = 32
|
606 |
+
09/30/2023 22:17:25 - INFO - __main__ - ***** Eval results *****
|
607 |
+
09/30/2023 22:17:25 - INFO - __main__ - acc = 0.8182
|
608 |
+
09/30/2023 22:21:28 - INFO - __main__ - global_step = 12850, average loss = 0.06894337675126735
|
609 |
+
09/30/2023 22:25:41 - INFO - __main__ - global_step = 12900, average loss = 0.07351460054007475
|
610 |
+
09/30/2023 22:29:49 - INFO - __main__ - global_step = 12950, average loss = 0.0674650944762834
|
611 |
+
09/30/2023 22:34:09 - INFO - __main__ - global_step = 13000, average loss = 0.07850258736492834
|
612 |
+
09/30/2023 22:34:09 - INFO - __main__ - ***** Running evaluation *****
|
613 |
+
09/30/2023 22:34:09 - INFO - __main__ - Num examples = 10000
|
614 |
+
09/30/2023 22:34:09 - INFO - __main__ - Batch size = 32
|
615 |
+
09/30/2023 22:38:30 - INFO - __main__ - ***** Eval results *****
|
616 |
+
09/30/2023 22:38:30 - INFO - __main__ - acc = 0.8321
|
617 |
+
09/30/2023 22:42:24 - INFO - __main__ - global_step = 13050, average loss = 0.07653208828101925
|
618 |
+
09/30/2023 22:46:20 - INFO - __main__ - global_step = 13100, average loss = 0.06802368102005857
|
619 |
+
09/30/2023 22:50:29 - INFO - __main__ - global_step = 13150, average loss = 0.06454230795552576
|
620 |
+
09/30/2023 22:54:34 - INFO - __main__ - global_step = 13200, average loss = 0.07258539929578546
|
621 |
+
09/30/2023 22:54:35 - INFO - __main__ - ***** Running evaluation *****
|
622 |
+
09/30/2023 22:54:35 - INFO - __main__ - Num examples = 10000
|
623 |
+
09/30/2023 22:54:35 - INFO - __main__ - Batch size = 32
|
624 |
+
09/30/2023 22:58:54 - INFO - __main__ - ***** Eval results *****
|
625 |
+
09/30/2023 22:58:54 - INFO - __main__ - acc = 0.8252
|
626 |
+
09/30/2023 23:02:57 - INFO - __main__ - global_step = 13250, average loss = 0.07325911161562544
|
627 |
+
09/30/2023 23:07:12 - INFO - __main__ - global_step = 13300, average loss = 0.06880584957727479
|
628 |
+
09/30/2023 23:11:21 - INFO - __main__ - global_step = 13350, average loss = 0.07009069720297703
|
629 |
+
09/30/2023 23:15:34 - INFO - __main__ - global_step = 13400, average loss = 0.07083460625182852
|
630 |
+
09/30/2023 23:15:35 - INFO - __main__ - ***** Running evaluation *****
|
631 |
+
09/30/2023 23:15:35 - INFO - __main__ - Num examples = 10000
|
632 |
+
09/30/2023 23:15:35 - INFO - __main__ - Batch size = 32
|
633 |
+
09/30/2023 23:19:56 - INFO - __main__ - ***** Eval results *****
|
634 |
+
09/30/2023 23:19:56 - INFO - __main__ - acc = 0.813
|
635 |
+
09/30/2023 23:23:55 - INFO - __main__ - global_step = 13450, average loss = 0.06977577161625959
|
636 |
+
09/30/2023 23:27:49 - INFO - __main__ - global_step = 13500, average loss = 0.0730690676838276
|
637 |
+
09/30/2023 23:31:51 - INFO - __main__ - global_step = 13550, average loss = 0.07233811266596604
|
638 |
+
09/30/2023 23:35:53 - INFO - __main__ - global_step = 13600, average loss = 0.0773136636797426
|
639 |
+
09/30/2023 23:35:54 - INFO - __main__ - ***** Running evaluation *****
|
640 |
+
09/30/2023 23:35:54 - INFO - __main__ - Num examples = 10000
|
641 |
+
09/30/2023 23:35:54 - INFO - __main__ - Batch size = 32
|
642 |
+
09/30/2023 23:40:14 - INFO - __main__ - ***** Eval results *****
|
643 |
+
09/30/2023 23:40:14 - INFO - __main__ - acc = 0.8254
|
644 |
+
09/30/2023 23:44:18 - INFO - __main__ - global_step = 13650, average loss = 0.0625762648001546
|
645 |
+
09/30/2023 23:48:29 - INFO - __main__ - global_step = 13700, average loss = 0.07835062241327251
|
646 |
+
09/30/2023 23:52:47 - INFO - __main__ - global_step = 13750, average loss = 0.06917831582177314
|
647 |
+
09/30/2023 23:57:06 - INFO - __main__ - global_step = 13800, average loss = 0.06653823942549934
|
648 |
+
09/30/2023 23:57:07 - INFO - __main__ - ***** Running evaluation *****
|
649 |
+
09/30/2023 23:57:07 - INFO - __main__ - Num examples = 10000
|
650 |
+
09/30/2023 23:57:07 - INFO - __main__ - Batch size = 32
|
651 |
+
10/01/2023 00:01:27 - INFO - __main__ - ***** Eval results *****
|
652 |
+
10/01/2023 00:01:27 - INFO - __main__ - acc = 0.8231
|
653 |
+
10/01/2023 00:05:24 - INFO - __main__ - global_step = 13850, average loss = 0.07134979092643334
|
654 |
+
10/01/2023 00:09:31 - INFO - __main__ - global_step = 13900, average loss = 0.07882154490274842
|
655 |
+
10/01/2023 00:13:33 - INFO - __main__ - global_step = 13950, average loss = 0.067044138008132
|
656 |
+
10/01/2023 00:17:54 - INFO - __main__ - global_step = 14000, average loss = 0.06602240080737828
|
657 |
+
10/01/2023 00:17:55 - INFO - __main__ - ***** Running evaluation *****
|
658 |
+
10/01/2023 00:17:55 - INFO - __main__ - Num examples = 10000
|
659 |
+
10/01/2023 00:17:55 - INFO - __main__ - Batch size = 32
|
660 |
+
10/01/2023 00:22:16 - INFO - __main__ - ***** Eval results *****
|
661 |
+
10/01/2023 00:22:16 - INFO - __main__ - acc = 0.8185
|
662 |
+
10/01/2023 00:26:20 - INFO - __main__ - global_step = 14050, average loss = 0.07546966458212409
|
663 |
+
10/01/2023 00:30:49 - INFO - __main__ - global_step = 14100, average loss = 0.06855787578620948
|
664 |
+
10/01/2023 00:35:15 - INFO - __main__ - global_step = 14150, average loss = 0.06737258993505747
|
665 |
+
10/01/2023 00:39:39 - INFO - __main__ - global_step = 14200, average loss = 0.05966844407041208
|
666 |
+
10/01/2023 00:39:40 - INFO - __main__ - ***** Running evaluation *****
|
667 |
+
10/01/2023 00:39:40 - INFO - __main__ - Num examples = 10000
|
668 |
+
10/01/2023 00:39:40 - INFO - __main__ - Batch size = 32
|
669 |
+
10/01/2023 00:44:00 - INFO - __main__ - ***** Eval results *****
|
670 |
+
10/01/2023 00:44:00 - INFO - __main__ - acc = 0.8282
|
671 |
+
10/01/2023 00:47:56 - INFO - __main__ - global_step = 14250, average loss = 0.0709371871012263
|
672 |
+
10/01/2023 00:51:54 - INFO - __main__ - global_step = 14300, average loss = 0.07779215545522675
|
673 |
+
10/01/2023 00:56:02 - INFO - __main__ - global_step = 14350, average loss = 0.06590510867084959
|
674 |
+
10/01/2023 01:00:08 - INFO - __main__ - global_step = 14400, average loss = 0.061885312875092496
|
675 |
+
10/01/2023 01:00:09 - INFO - __main__ - ***** Running evaluation *****
|
676 |
+
10/01/2023 01:00:09 - INFO - __main__ - Num examples = 10000
|
677 |
+
10/01/2023 01:00:09 - INFO - __main__ - Batch size = 32
|
678 |
+
10/01/2023 01:04:29 - INFO - __main__ - ***** Eval results *****
|
679 |
+
10/01/2023 01:04:29 - INFO - __main__ - acc = 0.8195
|
680 |
+
10/01/2023 01:08:20 - INFO - __main__ - global_step = 14450, average loss = 0.07757491528376705
|
681 |
+
10/01/2023 01:12:26 - INFO - __main__ - global_step = 14500, average loss = 0.061351443203457166
|
682 |
+
10/01/2023 01:16:44 - INFO - __main__ - global_step = 14550, average loss = 0.06742463728594884
|
683 |
+
10/01/2023 01:20:55 - INFO - __main__ - global_step = 14600, average loss = 0.06395716872473713
|
684 |
+
10/01/2023 01:20:56 - INFO - __main__ - ***** Running evaluation *****
|
685 |
+
10/01/2023 01:20:56 - INFO - __main__ - Num examples = 10000
|
686 |
+
10/01/2023 01:20:56 - INFO - __main__ - Batch size = 32
|
687 |
+
10/01/2023 01:25:16 - INFO - __main__ - ***** Eval results *****
|
688 |
+
10/01/2023 01:25:16 - INFO - __main__ - acc = 0.8271
|
689 |
+
10/01/2023 01:29:11 - INFO - __main__ - global_step = 14650, average loss = 0.0680865884249215
|
690 |
+
10/01/2023 01:33:17 - INFO - __main__ - global_step = 14700, average loss = 0.07319515083199804
|
691 |
+
10/01/2023 01:37:31 - INFO - __main__ - global_step = 14750, average loss = 0.0750861974158397
|
692 |
+
10/01/2023 01:41:39 - INFO - __main__ - global_step = 14800, average loss = 0.07455838610287174
|
693 |
+
10/01/2023 01:41:39 - INFO - __main__ - ***** Running evaluation *****
|
694 |
+
10/01/2023 01:41:39 - INFO - __main__ - Num examples = 10000
|
695 |
+
10/01/2023 01:41:39 - INFO - __main__ - Batch size = 32
|
696 |
+
10/01/2023 01:45:59 - INFO - __main__ - ***** Eval results *****
|
697 |
+
10/01/2023 01:45:59 - INFO - __main__ - acc = 0.8285
|
698 |
+
10/01/2023 01:49:49 - INFO - __main__ - global_step = 14850, average loss = 0.0746920863639025
|
699 |
+
10/01/2023 01:53:48 - INFO - __main__ - global_step = 14900, average loss = 0.06193213762038795
|
700 |
+
10/01/2023 01:58:00 - INFO - __main__ - global_step = 14950, average loss = 0.0684903811987897
|
701 |
+
10/01/2023 02:02:20 - INFO - __main__ - global_step = 15000, average loss = 0.07475626632280181
|
702 |
+
10/01/2023 02:02:21 - INFO - __main__ - ***** Running evaluation *****
|
703 |
+
10/01/2023 02:02:21 - INFO - __main__ - Num examples = 10000
|
704 |
+
10/01/2023 02:02:21 - INFO - __main__ - Batch size = 32
|
705 |
+
10/01/2023 02:06:40 - INFO - __main__ - ***** Eval results *****
|
706 |
+
10/01/2023 02:06:40 - INFO - __main__ - acc = 0.8221
|
707 |
+
10/01/2023 02:10:33 - INFO - __main__ - global_step = 15050, average loss = 0.06398421550955391
|
708 |
+
10/01/2023 02:14:31 - INFO - __main__ - global_step = 15100, average loss = 0.07387388837814797
|
709 |
+
10/01/2023 02:18:36 - INFO - __main__ - global_step = 15150, average loss = 0.07215547483820046
|
710 |
+
10/01/2023 02:22:42 - INFO - __main__ - global_step = 15200, average loss = 0.06692371807614109
|
711 |
+
10/01/2023 02:22:42 - INFO - __main__ - ***** Running evaluation *****
|
712 |
+
10/01/2023 02:22:42 - INFO - __main__ - Num examples = 10000
|
713 |
+
10/01/2023 02:22:42 - INFO - __main__ - Batch size = 32
|
714 |
+
10/01/2023 02:27:06 - INFO - __main__ - ***** Eval results *****
|
715 |
+
10/01/2023 02:27:06 - INFO - __main__ - acc = 0.828
|
716 |
+
10/01/2023 02:31:03 - INFO - __main__ - global_step = 15250, average loss = 0.07475481618889716
|
717 |
+
10/01/2023 02:35:03 - INFO - __main__ - global_step = 15300, average loss = 0.06605282124131918
|
718 |
+
10/01/2023 02:39:06 - INFO - __main__ - global_step = 15350, average loss = 0.0742860847054817
|
719 |
+
10/01/2023 02:43:08 - INFO - __main__ - global_step = 15400, average loss = 0.06508645007126689
|
720 |
+
10/01/2023 02:43:09 - INFO - __main__ - ***** Running evaluation *****
|
721 |
+
10/01/2023 02:43:09 - INFO - __main__ - Num examples = 10000
|
722 |
+
10/01/2023 02:43:09 - INFO - __main__ - Batch size = 32
|
723 |
+
10/01/2023 02:47:27 - INFO - __main__ - ***** Eval results *****
|
724 |
+
10/01/2023 02:47:27 - INFO - __main__ - acc = 0.8244
|
725 |
+
10/01/2023 02:51:15 - INFO - __main__ - global_step = 15450, average loss = 0.0657403554152188
|
726 |
+
10/01/2023 02:55:25 - INFO - __main__ - global_step = 15500, average loss = 0.06363382869447377
|
727 |
+
10/01/2023 02:59:33 - INFO - __main__ - global_step = 15550, average loss = 0.068332606570184
|
728 |
+
10/01/2023 03:03:36 - INFO - __main__ - global_step = 15600, average loss = 0.0638002801532275
|
729 |
+
10/01/2023 03:03:37 - INFO - __main__ - ***** Running evaluation *****
|
730 |
+
10/01/2023 03:03:37 - INFO - __main__ - Num examples = 10000
|
731 |
+
10/01/2023 03:03:37 - INFO - __main__ - Batch size = 32
|
732 |
+
10/01/2023 03:07:54 - INFO - __main__ - ***** Eval results *****
|
733 |
+
10/01/2023 03:07:54 - INFO - __main__ - acc = 0.8245
|
734 |
+
10/01/2023 03:11:47 - INFO - __main__ - global_step = 15650, average loss = 0.07057813088395051
|
735 |
+
10/01/2023 03:15:48 - INFO - __main__ - global_step = 15700, average loss = 0.059586076617561046
|
736 |
+
10/01/2023 03:19:50 - INFO - __main__ - global_step = 15750, average loss = 0.06329842852351249
|
737 |
+
10/01/2023 03:24:07 - INFO - __main__ - global_step = 15800, average loss = 0.0673095579940309
|
738 |
+
10/01/2023 03:24:08 - INFO - __main__ - ***** Running evaluation *****
|
739 |
+
10/01/2023 03:24:08 - INFO - __main__ - Num examples = 10000
|
740 |
+
10/01/2023 03:24:08 - INFO - __main__ - Batch size = 32
|
741 |
+
10/01/2023 03:28:27 - INFO - __main__ - ***** Eval results *****
|
742 |
+
10/01/2023 03:28:27 - INFO - __main__ - acc = 0.8191
|
743 |
+
10/01/2023 03:32:25 - INFO - __main__ - global_step = 15850, average loss = 0.06719043602446619
|
744 |
+
10/01/2023 03:36:22 - INFO - __main__ - global_step = 15900, average loss = 0.06470626855618321
|
745 |
+
10/01/2023 03:40:22 - INFO - __main__ - global_step = 15950, average loss = 0.0673678615699464
|
746 |
+
10/01/2023 03:44:32 - INFO - __main__ - global_step = 16000, average loss = 0.06654785299411742
|
747 |
+
10/01/2023 03:44:32 - INFO - __main__ - ***** Running evaluation *****
|
748 |
+
10/01/2023 03:44:32 - INFO - __main__ - Num examples = 10000
|
749 |
+
10/01/2023 03:44:32 - INFO - __main__ - Batch size = 32
|
750 |
+
10/01/2023 03:48:51 - INFO - __main__ - ***** Eval results *****
|
751 |
+
10/01/2023 03:48:51 - INFO - __main__ - acc = 0.826
|
752 |
+
10/01/2023 03:52:42 - INFO - __main__ - global_step = 16050, average loss = 0.07211193255971012
|
753 |
+
10/01/2023 03:56:30 - INFO - __main__ - global_step = 16100, average loss = 0.07810956820030697
|
754 |
+
10/01/2023 04:00:37 - INFO - __main__ - global_step = 16150, average loss = 0.07871339554849328
|
755 |
+
10/01/2023 04:04:48 - INFO - __main__ - global_step = 16200, average loss = 0.06766451962915199
|
756 |
+
10/01/2023 04:04:48 - INFO - __main__ - ***** Running evaluation *****
|
757 |
+
10/01/2023 04:04:48 - INFO - __main__ - Num examples = 10000
|
758 |
+
10/01/2023 04:04:48 - INFO - __main__ - Batch size = 32
|
759 |
+
10/01/2023 04:09:07 - INFO - __main__ - ***** Eval results *****
|
760 |
+
10/01/2023 04:09:07 - INFO - __main__ - acc = 0.8234
|
761 |
+
10/01/2023 04:13:00 - INFO - __main__ - global_step = 16250, average loss = 0.07233332002186216
|
762 |
+
10/01/2023 04:17:08 - INFO - __main__ - global_step = 16300, average loss = 0.06269402921956498
|
763 |
+
10/01/2023 04:21:18 - INFO - __main__ - global_step = 16350, average loss = 0.066974333815524
|
764 |
+
10/01/2023 04:25:36 - INFO - __main__ - global_step = 16400, average loss = 0.06326851320967762
|
765 |
+
10/01/2023 04:25:36 - INFO - __main__ - ***** Running evaluation *****
|
766 |
+
10/01/2023 04:25:36 - INFO - __main__ - Num examples = 10000
|
767 |
+
10/01/2023 04:25:36 - INFO - __main__ - Batch size = 32
|
768 |
+
10/01/2023 04:29:55 - INFO - __main__ - ***** Eval results *****
|
769 |
+
10/01/2023 04:29:55 - INFO - __main__ - acc = 0.8218
|
770 |
+
10/01/2023 04:33:53 - INFO - __main__ - global_step = 16450, average loss = 0.0583337911261151
|
771 |
+
10/01/2023 04:38:00 - INFO - __main__ - global_step = 16500, average loss = 0.06651346774706327
|
772 |
+
10/01/2023 04:42:10 - INFO - __main__ - global_step = 16550, average loss = 0.07442569829370768
|
773 |
+
10/01/2023 04:46:19 - INFO - __main__ - global_step = 16600, average loss = 0.0704036247156182
|
774 |
+
10/01/2023 04:46:19 - INFO - __main__ - ***** Running evaluation *****
|
775 |
+
10/01/2023 04:46:19 - INFO - __main__ - Num examples = 10000
|
776 |
+
10/01/2023 04:46:19 - INFO - __main__ - Batch size = 32
|
777 |
+
10/01/2023 04:50:38 - INFO - __main__ - ***** Eval results *****
|
778 |
+
10/01/2023 04:50:38 - INFO - __main__ - acc = 0.8268
|
779 |
+
10/01/2023 04:54:40 - INFO - __main__ - global_step = 16650, average loss = 0.07102784802380484
|
780 |
+
10/01/2023 04:58:39 - INFO - __main__ - global_step = 16700, average loss = 0.07482151540141785
|
781 |
+
10/01/2023 05:02:48 - INFO - __main__ - global_step = 16750, average loss = 0.06266404812475229
|
782 |
+
10/01/2023 05:06:49 - INFO - __main__ - global_step = 16800, average loss = 0.06936132206232287
|
783 |
+
10/01/2023 05:06:50 - INFO - __main__ - ***** Running evaluation *****
|
784 |
+
10/01/2023 05:06:50 - INFO - __main__ - Num examples = 10000
|
785 |
+
10/01/2023 05:06:50 - INFO - __main__ - Batch size = 32
|
786 |
+
10/01/2023 05:11:07 - INFO - __main__ - ***** Eval results *****
|
787 |
+
10/01/2023 05:11:07 - INFO - __main__ - acc = 0.8313
|
788 |
+
10/01/2023 05:15:16 - INFO - __main__ - global_step = 16850, average loss = 0.060352628196997105
|
789 |
+
10/01/2023 05:19:33 - INFO - __main__ - global_step = 16900, average loss = 0.0641949670168833
|
790 |
+
10/01/2023 05:23:53 - INFO - __main__ - global_step = 16950, average loss = 0.0711748162342701
|
791 |
+
10/01/2023 05:28:04 - INFO - __main__ - global_step = 17000, average loss = 0.07767359625780955
|
792 |
+
10/01/2023 05:28:05 - INFO - __main__ - ***** Running evaluation *****
|
793 |
+
10/01/2023 05:28:05 - INFO - __main__ - Num examples = 10000
|
794 |
+
10/01/2023 05:28:05 - INFO - __main__ - Batch size = 32
|
795 |
+
10/01/2023 05:32:22 - INFO - __main__ - ***** Eval results *****
|
796 |
+
10/01/2023 05:32:22 - INFO - __main__ - acc = 0.8302
|
797 |
+
10/01/2023 05:36:19 - INFO - __main__ - global_step = 17050, average loss = 0.059951672412971675
|
798 |
+
10/01/2023 05:40:23 - INFO - __main__ - global_step = 17100, average loss = 0.0679468241819086
|
799 |
+
10/01/2023 05:44:37 - INFO - __main__ - global_step = 17150, average loss = 0.06287542213140114
|
800 |
+
10/01/2023 05:48:53 - INFO - __main__ - global_step = 17200, average loss = 0.07064101672236575
|
801 |
+
10/01/2023 05:48:53 - INFO - __main__ - ***** Running evaluation *****
|
802 |
+
10/01/2023 05:48:53 - INFO - __main__ - Num examples = 10000
|
803 |
+
10/01/2023 05:48:53 - INFO - __main__ - Batch size = 32
|
804 |
+
10/01/2023 05:53:11 - INFO - __main__ - ***** Eval results *****
|
805 |
+
10/01/2023 05:53:11 - INFO - __main__ - acc = 0.8288
|
806 |
+
10/01/2023 05:57:08 - INFO - __main__ - global_step = 17250, average loss = 0.06821862254073494
|
807 |
+
10/01/2023 06:01:07 - INFO - __main__ - global_step = 17300, average loss = 0.06737288911346695
|
808 |
+
10/01/2023 06:05:09 - INFO - __main__ - global_step = 17350, average loss = 0.06524526451248676
|
809 |
+
10/01/2023 06:09:17 - INFO - __main__ - global_step = 17400, average loss = 0.06838752188666604
|
810 |
+
10/01/2023 06:09:17 - INFO - __main__ - ***** Running evaluation *****
|
811 |
+
10/01/2023 06:09:17 - INFO - __main__ - Num examples = 10000
|
812 |
+
10/01/2023 06:09:17 - INFO - __main__ - Batch size = 32
|
813 |
+
10/01/2023 06:13:34 - INFO - __main__ - ***** Eval results *****
|
814 |
+
10/01/2023 06:13:34 - INFO - __main__ - acc = 0.8292
|
815 |
+
10/01/2023 06:17:34 - INFO - __main__ - global_step = 17450, average loss = 0.07033179465208378
|
816 |
+
10/01/2023 06:21:42 - INFO - __main__ - global_step = 17500, average loss = 0.07338941472058651
|
817 |
+
10/01/2023 06:25:54 - INFO - __main__ - global_step = 17550, average loss = 0.06760536882744418
|
818 |
+
10/01/2023 06:30:29 - INFO - __main__ - global_step = 17600, average loss = 0.06395369231896893
|
819 |
+
10/01/2023 06:30:30 - INFO - __main__ - ***** Running evaluation *****
|
820 |
+
10/01/2023 06:30:30 - INFO - __main__ - Num examples = 10000
|
821 |
+
10/01/2023 06:30:30 - INFO - __main__ - Batch size = 32
|
822 |
+
10/01/2023 06:34:46 - INFO - __main__ - ***** Eval results *****
|
823 |
+
10/01/2023 06:34:46 - INFO - __main__ - acc = 0.8226
|
824 |
+
10/01/2023 06:38:42 - INFO - __main__ - global_step = 17650, average loss = 0.0788995540245378
|
825 |
+
10/01/2023 06:42:45 - INFO - __main__ - global_step = 17700, average loss = 0.058938835552726235
|
826 |
+
10/01/2023 06:46:55 - INFO - __main__ - global_step = 17750, average loss = 0.062029462043719834
|
827 |
+
10/01/2023 06:51:15 - INFO - __main__ - global_step = 17800, average loss = 0.07220558329383493
|
828 |
+
10/01/2023 06:51:15 - INFO - __main__ - ***** Running evaluation *****
|
829 |
+
10/01/2023 06:51:15 - INFO - __main__ - Num examples = 10000
|
830 |
+
10/01/2023 06:51:15 - INFO - __main__ - Batch size = 32
|
831 |
+
10/01/2023 06:55:33 - INFO - __main__ - ***** Eval results *****
|
832 |
+
10/01/2023 06:55:33 - INFO - __main__ - acc = 0.823
|
833 |
+
10/01/2023 06:59:32 - INFO - __main__ - global_step = 17850, average loss = 0.07046543042039048
|
834 |
+
10/01/2023 07:03:39 - INFO - __main__ - global_step = 17900, average loss = 0.0620857437804807
|
835 |
+
10/01/2023 07:07:50 - INFO - __main__ - global_step = 17950, average loss = 0.05406381562563183
|
836 |
+
10/01/2023 07:12:05 - INFO - __main__ - global_step = 18000, average loss = 0.05979254503792617
|
837 |
+
10/01/2023 07:12:05 - INFO - __main__ - ***** Running evaluation *****
|
838 |
+
10/01/2023 07:12:05 - INFO - __main__ - Num examples = 10000
|
839 |
+
10/01/2023 07:12:05 - INFO - __main__ - Batch size = 32
|
840 |
+
10/01/2023 07:16:22 - INFO - __main__ - ***** Eval results *****
|
841 |
+
10/01/2023 07:16:22 - INFO - __main__ - acc = 0.8237
|
842 |
+
10/01/2023 07:20:13 - INFO - __main__ - global_step = 18050, average loss = 0.06541542315782863
|
843 |
+
10/01/2023 07:24:31 - INFO - __main__ - global_step = 18100, average loss = 0.06534778851972078
|
844 |
+
10/01/2023 07:28:50 - INFO - __main__ - global_step = 18150, average loss = 0.06520377914806887
|
845 |
+
10/01/2023 07:33:09 - INFO - __main__ - global_step = 18200, average loss = 0.05995443502964917
|
846 |
+
10/01/2023 07:33:10 - INFO - __main__ - ***** Running evaluation *****
|
847 |
+
10/01/2023 07:33:10 - INFO - __main__ - Num examples = 10000
|
848 |
+
10/01/2023 07:33:10 - INFO - __main__ - Batch size = 32
|
849 |
+
10/01/2023 07:37:27 - INFO - __main__ - ***** Eval results *****
|
850 |
+
10/01/2023 07:37:27 - INFO - __main__ - acc = 0.825
|
851 |
+
10/01/2023 07:41:29 - INFO - __main__ - global_step = 18250, average loss = 0.0729160438424151
|
852 |
+
10/01/2023 07:45:44 - INFO - __main__ - global_step = 18300, average loss = 0.06983143856698007
|
853 |
+
10/01/2023 07:48:53 - INFO - __main__ - ***** Running evaluation *****
|
854 |
+
10/01/2023 07:48:53 - INFO - __main__ - Num examples = 10000
|
855 |
+
10/01/2023 07:48:53 - INFO - __main__ - Batch size = 32
|
856 |
+
10/01/2023 07:53:22 - INFO - __main__ - ***** Eval results *****
|
857 |
+
10/01/2023 07:53:22 - INFO - __main__ - acc = 0.8249
|
858 |
+
10/01/2023 07:53:22 - INFO - __main__ - global_step = 18336, average loss = 0.09140925639286196
|
859 |
+
10/01/2023 07:53:56 - INFO - __main__ - ***** Running evaluation *****
|
860 |
+
10/01/2023 07:53:56 - INFO - __main__ - Num examples = 10000
|
861 |
+
10/01/2023 07:53:56 - INFO - __main__ - Batch size = 32
|
862 |
+
10/01/2023 07:58:24 - INFO - __main__ - ***** Eval results *****
|
863 |
+
10/01/2023 07:58:24 - INFO - __main__ - acc = 0.8326
|
864 |
+
10/01/2023 07:58:30 - INFO - evaluate_DeBERTa - Namespace(dataset_file='../../../data/mcqa/eval/socialiqa_dev.jsonl', lm='output/Output_ATOMIC-pseudo-wWC/car_2i/deberta-v3-large_car_2i_name_100k_seed_101_5e-6', out_dir='./eval_results/deberta-v3-large_car_2i_name_100k_seed_101_5e-6', device=0, reader='socialiqa', overwrite_output_dir=False, cache_dir=None)
|
865 |
+
10/01/2023 07:58:30 - INFO - evaluate_DeBERTa - Initializing output/Output_ATOMIC-pseudo-wWC/car_2i/deberta-v3-large_car_2i_name_100k_seed_101_5e-6
|
866 |
+
10/01/2023 08:06:13 - INFO - evaluate_DeBERTa - Namespace(dataset_file='../../../data/mcqa/eval/winogrande_dev.jsonl', lm='output/Output_ATOMIC-pseudo-wWC/car_2i/deberta-v3-large_car_2i_name_100k_seed_101_5e-6', out_dir='./eval_results/deberta-v3-large_car_2i_name_100k_seed_101_5e-6', device=0, reader='winogrande', overwrite_output_dir=False, cache_dir=None)
|
867 |
+
10/01/2023 08:06:13 - INFO - evaluate_DeBERTa - Initializing output/Output_ATOMIC-pseudo-wWC/car_2i/deberta-v3-large_car_2i_name_100k_seed_101_5e-6
|
868 |
+
10/01/2023 08:08:40 - INFO - evaluate_DeBERTa - Namespace(dataset_file='../../../data/mcqa/eval/piqa_dev.jsonl', lm='output/Output_ATOMIC-pseudo-wWC/car_2i/deberta-v3-large_car_2i_name_100k_seed_101_5e-6', out_dir='./eval_results/deberta-v3-large_car_2i_name_100k_seed_101_5e-6', device=0, reader='piqa', overwrite_output_dir=False, cache_dir=None)
|
869 |
+
10/01/2023 08:08:40 - INFO - evaluate_DeBERTa - Initializing output/Output_ATOMIC-pseudo-wWC/car_2i/deberta-v3-large_car_2i_name_100k_seed_101_5e-6
|
870 |
+
10/01/2023 08:17:19 - INFO - evaluate_DeBERTa - Namespace(dataset_file='../../../data/mcqa/eval/commonsenseqa_dev.jsonl', lm='output/Output_ATOMIC-pseudo-wWC/car_2i/deberta-v3-large_car_2i_name_100k_seed_101_5e-6', out_dir='./eval_results/deberta-v3-large_car_2i_name_100k_seed_101_5e-6', device=0, reader='commonsenseqa', overwrite_output_dir=False, cache_dir=None)
|
871 |
+
10/01/2023 08:17:19 - INFO - evaluate_DeBERTa - Initializing output/Output_ATOMIC-pseudo-wWC/car_2i/deberta-v3-large_car_2i_name_100k_seed_101_5e-6
|
872 |
+
10/01/2023 08:23:12 - INFO - evaluate_DeBERTa - Namespace(dataset_file='../../../data/mcqa/eval/anli_dev.jsonl', lm='output/Output_ATOMIC-pseudo-wWC/car_2i/deberta-v3-large_car_2i_name_100k_seed_101_5e-6', out_dir='./eval_results/deberta-v3-large_car_2i_name_100k_seed_101_5e-6', device=0, reader='anli', overwrite_output_dir=False, cache_dir=None)
|
873 |
+
10/01/2023 08:23:12 - INFO - evaluate_DeBERTa - Initializing output/Output_ATOMIC-pseudo-wWC/car_2i/deberta-v3-large_car_2i_name_100k_seed_101_5e-6
|
874 |
+
10/01/2023 08:28:58 - INFO - __main__ - ***** Running evaluation *****
|
875 |
+
10/01/2023 08:28:58 - INFO - __main__ - Num examples = 120
|
876 |
+
10/01/2023 08:28:58 - INFO - __main__ - Batch size = 32
|
877 |
+
10/01/2023 08:29:16 - INFO - __main__ - ***** Eval results *****
|
878 |
+
10/01/2023 08:29:16 - INFO - __main__ - acc = 0.475
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d4e6646c04ef1788eae8dab3445de6faa31eccb52a2f6ef22a6957c7e802b46c
|
3 |
+
size 1915
|