tqfang229 commited on
Commit
9a2897a
1 Parent(s): ea1533b

Upload folder using huggingface_hub

Browse files
.gitattributes CHANGED
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ cached_dev_deberta-mlm_128_atomic filter=lfs diff=lfs merge=lfs -text
37
+ cached_train_deberta-mlm_128_atomic filter=lfs diff=lfs merge=lfs -text
added_tokens.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ {
2
+ "[MASK]": 128000
3
+ }
cached_dev_deberta-mlm_128_atomic ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bcf7fda43dc4a34e0720d4dd64075cc48c2ae0002fad2806cdbe2811a0d3bd3c
3
+ size 4451683
cached_train_deberta-mlm_128_atomic ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4ff1dec300b58614baae2c3c18eb9d908a8f99cf338c042fb0b5eebb65ca833d
3
+ size 334716007
config.json ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "microsoft/deberta-v3-large",
3
+ "architectures": [
4
+ "DebertaV2ForMaskedLM"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "finetuning_task": "atomic",
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.1,
10
+ "hidden_size": 1024,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 4096,
13
+ "layer_norm_eps": 1e-07,
14
+ "max_position_embeddings": 512,
15
+ "max_relative_positions": -1,
16
+ "model_type": "deberta-v2",
17
+ "norm_rel_ebd": "layer_norm",
18
+ "num_attention_heads": 16,
19
+ "num_hidden_layers": 24,
20
+ "pad_token_id": 0,
21
+ "pooler_dropout": 0,
22
+ "pooler_hidden_act": "gelu",
23
+ "pooler_hidden_size": 1024,
24
+ "pos_att_type": [
25
+ "p2c",
26
+ "c2p"
27
+ ],
28
+ "position_biased_input": false,
29
+ "position_buckets": 256,
30
+ "relative_attention": true,
31
+ "share_att_key": true,
32
+ "torch_dtype": "float32",
33
+ "transformers_version": "4.31.0",
34
+ "type_vocab_size": 0,
35
+ "vocab_size": 128100
36
+ }
data_utils.py ADDED
@@ -0,0 +1,236 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import json
2
+ import logging
3
+
4
+ import nltk
5
+ from nltk.corpus import stopwords
6
+ from tqdm import tqdm
7
+ from tqdm import tqdm
8
+
9
+ skip_words = set(stopwords.words('english'))
10
+ skip_words.add('\'s')
11
+ skip_words.add('.')
12
+ skip_words.add(',')
13
+ PERSON_NAMES = ['Alex', 'Ash', 'Aspen', 'Bali', 'Berkeley', 'Cameron', 'Chris', 'Cody', 'Dana', 'Drew', 'Emory',
14
+ 'Flynn', 'Gale', 'Jamie', 'Jesse',
15
+ 'Kai', 'Kendall', 'Kyle', 'Lee', 'Logan', 'Max', 'Morgan', 'Nico', 'Paris', 'Pat', 'Quinn', 'Ray',
16
+ 'Robin', 'Rowan', 'Rudy', 'Sam', 'Skylar', 'Sydney',
17
+ 'Taylor', 'Tracy', 'West', 'Wynne']
18
+ logger = logging.getLogger(__name__)
19
+
20
+
21
+ def accuracy(out, labels):
22
+ return {'acc': (out == labels).mean()}
23
+
24
+
25
+ def handle_words(span, tokenizer, keywords=None, is_start=False):
26
+ inputs = []
27
+ labels = []
28
+ words = nltk.word_tokenize(span)
29
+ for w_i, w in enumerate(words):
30
+ if (w_i == 0 and is_start) or w == '.' or w == ',' or w.startswith('\''):
31
+ w_bpes = tokenizer.tokenize(w)
32
+ else:
33
+ w_bpes = tokenizer.tokenize(w, add_prefix_space=True)
34
+ inputs.extend(w_bpes)
35
+ if keywords != None:
36
+ if w in keywords:
37
+ labels.extend(w_bpes)
38
+ else:
39
+ labels.extend([-100] * len(w_bpes))
40
+ else:
41
+ if w not in PERSON_NAMES and w not in skip_words and w.lower() not in skip_words:
42
+ labels.extend(w_bpes)
43
+ else:
44
+ labels.extend([-100] * len(w_bpes))
45
+ return inputs, labels
46
+
47
+
48
+ def handle_underscores(suffix, tokenizer, keywords=None, prefix=False):
49
+ inputs = []
50
+ labels = []
51
+ if '_' in suffix:
52
+ suffix_parts = [i.strip() for i in suffix.split('___')]
53
+ for i, part in enumerate(suffix_parts):
54
+ if part:
55
+ tmp_inputs, tmp_labels = handle_words(part, tokenizer, keywords=keywords, is_start=(i == 0 and prefix))
56
+ inputs += tmp_inputs
57
+ labels += tmp_labels
58
+
59
+ if i != len(suffix_parts) - 1 and suffix_parts[i + 1]:
60
+ inputs.append(tokenizer.mask_token)
61
+ labels.append(-100)
62
+ else:
63
+ inputs.append(tokenizer.mask_token)
64
+ labels.append(-100)
65
+ else:
66
+ inputs, labels = handle_words(suffix, tokenizer, keywords=keywords, is_start=prefix)
67
+ return inputs, labels
68
+
69
+ from tqdm import tqdm
70
+ def convert_examples_to_features(examples, tokenizer, max_length=512):
71
+ data = []
72
+ for example in tqdm(examples, desc="converting examples to features"):
73
+ inputs, labels = handle_underscores(example['context'], tokenizer, keywords=example.get('keywords', None), prefix=True)
74
+ choices = [handle_underscores(cand, tokenizer) for cand in example['candidates']]
75
+ input_ids = [inputs + cand[0] for cand in choices]
76
+ input_ids = [tokenizer.convert_tokens_to_ids(cand) for cand in input_ids]
77
+ label_ids = [labels + cand[1] for cand in choices]
78
+ label_ids = [[t if t == -100 else input_ids[i][t_i] for t_i, t in enumerate(cand)] for i, cand in
79
+ enumerate(label_ids)]
80
+ label_ids = [[-100] + cand + [-100] for cand in label_ids]
81
+ input_ids = [tokenizer.prepare_for_model(cand, max_length=max_length, truncation=True)['input_ids'] for cand in
82
+ input_ids]
83
+ data.append([input_ids, label_ids, example['correct']])
84
+ return data
85
+
86
+
87
+ class ATOMICMLMProcessor(object):
88
+ def __init__(self, args):
89
+ self.D = []
90
+ self.filelist = [args.train_file, args.dev_file]
91
+
92
+ def get_train_examples(self):
93
+ self.load_data(self.filelist[0])
94
+ return self.D
95
+
96
+ def get_dev_examples(self):
97
+ data = []
98
+ with open(self.filelist[1], 'r') as f:
99
+ for row in tqdm(f):
100
+ sample = json.loads(row)
101
+ data.append(sample)
102
+ print(len(data))
103
+ return data
104
+
105
+ def load_data(self, filename):
106
+ with open(filename, "r") as f:
107
+ for row in tqdm(f):
108
+ sample = json.loads(row)
109
+ self.D.append({'id': sample['id'], 'context': sample['context'],
110
+ 'ending': sample['candidates'][sample['correct']], 'keywords': sample.get('keywords', None)})
111
+ print(len(self.D))
112
+
113
+
114
+ class ATOMICProcessor(object):
115
+ def __init__(self, args):
116
+ print('loading from %s %s' % (args.train_file, args.dev_file))
117
+ self.filelist = [args.train_file, args.dev_file]
118
+ self.D = [[], []]
119
+
120
+ def get_train_examples(self):
121
+ self.load_data(self.filelist[0], 0)
122
+ return self.D[0]
123
+
124
+ def get_dev_examples(self):
125
+ self.load_data(self.filelist[1], 1)
126
+ return self.D[1]
127
+
128
+ def load_data(self, filename, sid):
129
+ with open(filename, "r") as f:
130
+ for row in tqdm(f):
131
+ sample = json.loads(row)
132
+ self.D[sid].append(sample)
133
+ print(len(self.D[sid]))
134
+
135
+
136
+ class CWWVProcessor(object):
137
+ def __init__(self, args):
138
+ self.answerKey_mapping = {'A': 0, 'B': 1, 'C': 2}
139
+ self.D = [[], []]
140
+ if args.task_name == 'cskg':
141
+ print('loading from %s %s' % (args.second_train_file, args.second_dev_file))
142
+ self.filelist = [args.second_train_file, args.second_dev_file]
143
+ else:
144
+ print('loading from %s %s' % (args.train_file, args.dev_file))
145
+ self.filelist = [args.train_file, args.dev_file]
146
+
147
+ def get_train_examples(self):
148
+ self.load_data(self.filelist[0], 0)
149
+ return self.D[0]
150
+
151
+ def get_dev_examples(self):
152
+ self.load_data(self.filelist[1], 1)
153
+ return self.D[1]
154
+
155
+ def load_data(self, filename, sid):
156
+ skipped = 0
157
+ with open(filename, "r") as f:
158
+ for row in tqdm(f):
159
+ sample = json.loads(row)
160
+ context = sample['question']['stem']
161
+ if context.endswith('.'):
162
+ context = context[:-1]
163
+ if not context.endswith('[MASK]'):
164
+ skipped += 1
165
+ context_parts = context.split('[MASK]')
166
+ context = context_parts[0].strip()
167
+ candidates = [c['text'] + context_parts[1] + '.' for c in sample['question']['choices']]
168
+ else:
169
+ context = context[:-7]
170
+ candidates = [c['text'] + '.' for c in sample['question']['choices']]
171
+ label = self.answerKey_mapping[sample['answerKey']]
172
+ keywords = nltk.word_tokenize(sample['question']['head'])
173
+ keywords = [w for w in keywords if w not in skip_words and w.lower() not in skip_words]
174
+ self.D[sid].append({'id': sample['id'], 'context': context, 'correct': label, 'candidates': candidates,
175
+ 'keywords': keywords})
176
+ print(len(self.D[sid]), skipped)
177
+
178
+
179
+ class CWWVMLMProcessor(object):
180
+ def __init__(self, args):
181
+ self.answerKey_mapping = {'A': 0, 'B': 1, 'C': 2}
182
+ self.D = []
183
+ self.filelist = [args.train_file, args.dev_file]
184
+ self.args = args
185
+
186
+ def get_train_examples(self):
187
+ self.load_data(self.filelist[0])
188
+ return self.D
189
+
190
+ def get_dev_examples(self):
191
+ processor = CSKGProcessor(self.args)
192
+ return processor.get_dev_examples()
193
+
194
+ def load_data(self, filename):
195
+ skipped = 0
196
+ with open(filename, "r") as f:
197
+ for row in tqdm(f):
198
+ sample = json.loads(row)
199
+ context = sample['question']['stem']
200
+ if context.endswith('.'):
201
+ context = context[:-1]
202
+ assert context.endswith('[MASK]')
203
+ context = context[:-7]
204
+ candidates = [c['text'] + '.' for c in sample['question']['choices']]
205
+ label = self.answerKey_mapping[sample['answerKey']]
206
+ keywords = nltk.word_tokenize(sample['question']['head'])
207
+ keywords = [w for w in keywords if w not in skip_words and w.lower() not in skip_words]
208
+ self.D.append(
209
+ {'id': sample['id'], 'context': context, 'ending': candidates[label], 'keywords': keywords})
210
+ print(len(self.D))
211
+
212
+
213
+ class CSKGProcessor(object):
214
+ def __init__(self, args):
215
+ # CWWV set always uses second train/dev file params
216
+ self.atomicprocessor = ATOMICProcessor(args)
217
+ self.cwwvprocessor = CWWVProcessor(args)
218
+
219
+ def get_train_examples(self):
220
+ cwwv_questions = self.cwwvprocessor.get_train_examples()
221
+ atomic_questions = self.atomicprocessor.get_train_examples()
222
+ return cwwv_questions + atomic_questions
223
+
224
+ def get_dev_examples(self):
225
+ cwwv_questions = self.cwwvprocessor.get_dev_examples()
226
+ atomic_questions = self.atomicprocessor.get_dev_examples()
227
+ return cwwv_questions + atomic_questions
228
+
229
+
230
+ myprocessors = {
231
+ "atomic": ATOMICProcessor,
232
+ "cwwv": CWWVProcessor,
233
+ "atomicmlm": ATOMICMLMProcessor,
234
+ "cwwvmlm": CWWVMLMProcessor,
235
+ "cskg": CSKGProcessor
236
+ }
eval_results.txt ADDED
@@ -0,0 +1 @@
 
 
1
+ acc = 0.475
logits_test.txt ADDED
@@ -0,0 +1,120 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ -11.985331535339355 -13.357017517089844 -15.029851913452148 -16.39310073852539 -16.923053741455078
2
+ -12.25283432006836 -15.136346817016602 -15.764205932617188 -17.14737319946289 -16.522167205810547
3
+ -12.823394775390625 -15.571006774902344 -18.32282829284668 -13.100141525268555 -16.811420440673828
4
+ -10.969256401062012 -13.689325332641602 -11.483299255371094 -10.86734390258789 -15.446307182312012
5
+ -10.255317687988281 -11.23694133758545 -12.866697311401367 -10.5074462890625 -14.253149032592773
6
+ -12.706957817077637 -13.617804527282715 -11.692843437194824 -12.443273544311523 -15.97578239440918
7
+ -12.503711700439453 -17.07842254638672 -16.464298248291016 -14.878570556640625 -16.63575553894043
8
+ -11.61707592010498 -13.73621940612793 -12.556190490722656 -16.594358444213867 -15.703083038330078
9
+ -11.196725845336914 -15.495702743530273 -14.119497299194336 -11.031454086303711 -16.43398666381836
10
+ -10.521356582641602 -16.258441925048828 -17.279918670654297 -18.873933792114258 -15.915616989135742
11
+ -11.256342887878418 -18.144832611083984 -17.276641845703125 -15.105140686035156 -16.15310287475586
12
+ -11.635124206542969 -12.914545059204102 -13.48871898651123 -14.709991455078125 -16.50333023071289
13
+ -10.433307647705078 -10.201807022094727 -13.881892204284668 -15.707653045654297 -16.496707916259766
14
+ -12.453126907348633 -13.353202819824219 -11.582731246948242 -13.375235557556152 -17.256397247314453
15
+ -11.852107048034668 -10.913325309753418 -11.62298583984375 -11.65191650390625 -16.276226043701172
16
+ -11.433916091918945 -10.491494178771973 -12.900442123413086 -13.999748229980469 -15.658428192138672
17
+ -11.665186882019043 -12.186442375183105 -14.808893203735352 -14.345434188842773 -15.63730239868164
18
+ -11.523735046386719 -15.132838249206543 -14.409159660339355 -12.7765531539917 -16.388263702392578
19
+ -13.544512748718262 -13.325263977050781 -12.283462524414062 -12.502897262573242 -15.876867294311523
20
+ -11.84539794921875 -16.296030044555664 -13.924732208251953 -15.236044883728027 -16.84980583190918
21
+ -16.54426383972168 -14.162543296813965 -12.575240135192871 -13.8094482421875 -16.731632232666016
22
+ -9.845342636108398 -15.500575065612793 -11.547300338745117 -15.00468635559082 -15.337156295776367
23
+ -11.94580078125 -12.20471477508545 -11.616270065307617 -15.501757621765137 -15.509384155273438
24
+ -11.23939323425293 -12.356117248535156 -13.415891647338867 -11.913195610046387 -16.23021697998047
25
+ -13.631462097167969 -13.59908676147461 -13.40437126159668 -16.07756996154785 -15.115039825439453
26
+ -11.732011795043945 -14.669859886169434 -14.041311264038086 -15.339503288269043 -16.011241912841797
27
+ -8.993430137634277 -12.121005058288574 -10.010058403015137 -14.740504264831543 -14.144813537597656
28
+ -9.875417709350586 -9.784116744995117 -12.305227279663086 -15.662696838378906 -15.405596733093262
29
+ -9.947235107421875 -16.609920501708984 -16.379150390625 -20.26329231262207 -14.625556945800781
30
+ -16.708106994628906 -12.748739242553711 -13.981369018554688 -15.383566856384277 -14.687983512878418
31
+ -11.027362823486328 -17.01676368713379 -14.259870529174805 -13.757545471191406 -15.068336486816406
32
+ -14.97132682800293 -11.124801635742188 -14.391558647155762 -12.971904754638672 -15.092077255249023
33
+ -12.326019287109375 -13.14168930053711 -13.475115776062012 -14.218363761901855 -14.645342826843262
34
+ -11.144308090209961 -13.021101951599121 -14.144937515258789 -13.647077560424805 -15.991572380065918
35
+ -14.37043571472168 -14.487944602966309 -15.227438926696777 -17.627277374267578 -15.609060287475586
36
+ -12.285761833190918 -13.407965660095215 -15.185203552246094 -12.945239067077637 -15.660846710205078
37
+ -13.997186660766602 -13.769948959350586 -14.953908920288086 -11.359712600708008 -14.329699516296387
38
+ -11.684611320495605 -14.430723190307617 -16.186899185180664 -13.829656600952148 -17.049232482910156
39
+ -13.989039421081543 -10.588340759277344 -15.690905570983887 -16.892181396484375 -16.528379440307617
40
+ -11.620543479919434 -11.551864624023438 -13.757423400878906 -11.874419212341309 -15.980398178100586
41
+ -12.374351501464844 -14.128835678100586 -14.20466136932373 -16.15315818786621 -15.599609375
42
+ -14.862902641296387 -14.775538444519043 -11.799307823181152 -13.529033660888672 -16.550161361694336
43
+ -11.758308410644531 -12.798704147338867 -13.636115074157715 -15.04835319519043 -16.15018653869629
44
+ -10.89073371887207 -17.37094497680664 -16.38538360595703 -15.300247192382812 -15.836639404296875
45
+ -12.2295560836792 -13.281776428222656 -11.386110305786133 -13.427268981933594 -15.335490226745605
46
+ -19.555706024169922 -12.590005874633789 -14.160160064697266 -16.365543365478516 -17.29129981994629
47
+ -11.852313041687012 -12.861295700073242 -12.042010307312012 -13.391824722290039 -16.769405364990234
48
+ -11.795409202575684 -13.364195823669434 -14.922141075134277 -11.233430862426758 -16.088077545166016
49
+ -11.884429931640625 -12.776321411132812 -10.96551513671875 -13.180036544799805 -15.149337768554688
50
+ -14.861328125 -14.593585968017578 -12.553210258483887 -17.168903350830078 -15.611528396606445
51
+ -12.72950553894043 -10.737747192382812 -15.163175582885742 -14.780402183532715 -15.362897872924805
52
+ -10.313711166381836 -12.986738204956055 -13.380842208862305 -16.455732345581055 -14.981689453125
53
+ -12.478826522827148 -16.76121711730957 -16.831989288330078 -16.525733947753906 -15.847885131835938
54
+ -14.628618240356445 -11.984136581420898 -12.582441329956055 -16.439844131469727 -16.265674591064453
55
+ -11.344210624694824 -12.544027328491211 -15.989503860473633 -15.10544490814209 -15.973136901855469
56
+ -14.520594596862793 -13.788124084472656 -13.798048973083496 -13.979040145874023 -15.778616905212402
57
+ -13.025321006774902 -12.753511428833008 -11.481473922729492 -16.253257751464844 -14.98487377166748
58
+ -12.689830780029297 -16.152624130249023 -10.79024887084961 -13.604175567626953 -14.96052074432373
59
+ -10.081911087036133 -12.857580184936523 -14.366785049438477 -14.925143241882324 -15.236709594726562
60
+ -13.72541332244873 -17.140247344970703 -14.554573059082031 -16.237695693969727 -15.220977783203125
61
+ -12.363258361816406 -14.671875 -12.393234252929688 -13.685455322265625 -15.162212371826172
62
+ -12.525287628173828 -11.755924224853516 -11.487818717956543 -10.964709281921387 -14.18620491027832
63
+ -12.641595840454102 -12.06806468963623 -13.470266342163086 -15.523735046386719 -15.110023498535156
64
+ -10.243486404418945 -10.8483304977417 -15.268081665039062 -17.73096466064453 -14.491694450378418
65
+ -11.410097122192383 -14.304682731628418 -17.227609634399414 -15.861364364624023 -15.366393089294434
66
+ -13.248863220214844 -13.261842727661133 -13.531661033630371 -16.54248809814453 -16.259929656982422
67
+ -12.59164810180664 -13.846809387207031 -15.791946411132812 -13.07502269744873 -14.861738204956055
68
+ -15.870349884033203 -18.1973876953125 -14.544315338134766 -16.514846801757812 -14.571775436401367
69
+ -11.389364242553711 -12.424586296081543 -11.14108943939209 -15.748624801635742 -14.8790922164917
70
+ -12.217803001403809 -15.62755012512207 -16.650747299194336 -16.509571075439453 -15.311178207397461
71
+ -12.044157028198242 -14.750267028808594 -17.582698822021484 -13.546934127807617 -15.512325286865234
72
+ -14.079737663269043 -10.69660758972168 -13.699287414550781 -15.674205780029297 -14.529096603393555
73
+ -11.215898513793945 -13.137222290039062 -15.151588439941406 -15.361551284790039 -15.427042961120605
74
+ -15.472491264343262 -13.31407356262207 -17.27981948852539 -15.681211471557617 -15.767252922058105
75
+ -11.327293395996094 -17.34939956665039 -17.840465545654297 -15.820741653442383 -14.566900253295898
76
+ -13.018766403198242 -15.517611503601074 -17.448204040527344 -16.01276397705078 -15.718643188476562
77
+ -11.193071365356445 -15.165118217468262 -14.07136344909668 -12.923444747924805 -14.62411117553711
78
+ -12.101425170898438 -14.308100700378418 -14.739375114440918 -14.646849632263184 -14.93545913696289
79
+ -9.732519149780273 -12.507312774658203 -14.191499710083008 -12.70343017578125 -14.431779861450195
80
+ -14.082250595092773 -14.632597923278809 -15.651617050170898 -12.986234664916992 -16.02080726623535
81
+ -10.87934684753418 -15.8912992477417 -13.874499320983887 -14.047943115234375 -15.021934509277344
82
+ -13.368215560913086 -12.769327163696289 -12.11189079284668 -14.995542526245117 -15.780769348144531
83
+ -13.823423385620117 -18.496301651000977 -13.304229736328125 -18.130481719970703 -15.556083679199219
84
+ -11.371943473815918 -15.399284362792969 -16.673551559448242 -17.802629470825195 -16.158344268798828
85
+ -12.098010063171387 -16.252744674682617 -15.276991844177246 -15.084753036499023 -14.278797149658203
86
+ -13.902384757995605 -14.19427490234375 -15.481269836425781 -13.694448471069336 -15.118891716003418
87
+ -11.553057670593262 -18.223403930664062 -14.778602600097656 -17.133541107177734 -14.881399154663086
88
+ -11.718768119812012 -11.310720443725586 -18.56161117553711 -13.747978210449219 -14.171229362487793
89
+ -12.3494873046875 -10.71717643737793 -12.61784553527832 -13.59307861328125 -14.498141288757324
90
+ -14.827796936035156 -14.959348678588867 -12.612112045288086 -18.091611862182617 -16.525957107543945
91
+ -14.295256614685059 -17.82564926147461 -17.82574462890625 -15.090109825134277 -16.88511085510254
92
+ -11.850313186645508 -13.219352722167969 -13.954887390136719 -12.791426658630371 -14.770899772644043
93
+ -10.91953182220459 -14.908056259155273 -18.78179931640625 -16.55717658996582 -16.11922836303711
94
+ -10.402986526489258 -16.308622360229492 -13.00355052947998 -17.364574432373047 -14.528853416442871
95
+ -11.989408493041992 -16.08974266052246 -12.309541702270508 -17.035097122192383 -15.44270133972168
96
+ -12.839983940124512 -16.940263748168945 -16.2291259765625 -16.91362762451172 -15.839340209960938
97
+ -12.685194969177246 -15.007822036743164 -15.435506820678711 -15.527690887451172 -14.830557823181152
98
+ -15.379294395446777 -11.584933280944824 -13.179071426391602 -15.63725471496582 -15.120612144470215
99
+ -11.626914024353027 -13.498213768005371 -14.436857223510742 -16.254169464111328 -14.862478256225586
100
+ -12.431161880493164 -12.475348472595215 -16.244712829589844 -19.31494140625 -16.310794830322266
101
+ -11.904972076416016 -12.728023529052734 -16.9464054107666 -16.66975975036621 -17.148090362548828
102
+ -14.137011528015137 -16.81878662109375 -15.127734184265137 -15.06110954284668 -16.270536422729492
103
+ -10.801024436950684 -13.239822387695312 -13.742114067077637 -12.634249687194824 -14.606036186218262
104
+ -9.93199348449707 -16.211549758911133 -14.313543319702148 -15.699499130249023 -14.912216186523438
105
+ -13.826777458190918 -15.405548095703125 -16.025297164916992 -15.602980613708496 -15.071611404418945
106
+ -10.962064743041992 -14.387460708618164 -14.632959365844727 -11.710444450378418 -14.714736938476562
107
+ -11.960188865661621 -13.753063201904297 -15.276123046875 -18.502769470214844 -13.509201049804688
108
+ -14.572550773620605 -14.06547737121582 -13.678935050964355 -18.911367416381836 -15.910487174987793
109
+ -13.86817455291748 -17.146404266357422 -13.30243968963623 -14.152023315429688 -16.338394165039062
110
+ -12.468561172485352 -13.683039665222168 -14.846575736999512 -11.693964958190918 -14.717597961425781
111
+ -12.660326957702637 -12.625338554382324 -15.899386405944824 -13.582548141479492 -15.96905517578125
112
+ -9.468055725097656 -15.10066032409668 -13.716577529907227 -14.704435348510742 -13.372961044311523
113
+ -11.74072265625 -17.22024154663086 -16.204971313476562 -15.789412498474121 -15.067605972290039
114
+ -13.240243911743164 -12.687658309936523 -15.326522827148438 -17.321617126464844 -14.255077362060547
115
+ -15.12217903137207 -12.139941215515137 -13.076716423034668 -19.28219985961914 -14.893415451049805
116
+ -13.608329772949219 -16.2562313079834 -15.612630844116211 -14.110588073730469 -15.298316955566406
117
+ -12.895358085632324 -12.858833312988281 -16.372390747070312 -15.170218467712402 -15.558211326599121
118
+ -14.180404663085938 -15.49008560180664 -15.325713157653809 -14.368494987487793 -14.509702682495117
119
+ -13.97700309753418 -17.67074966430664 -16.38104248046875 -11.222564697265625 -14.656253814697266
120
+ -13.6754150390625 -13.450912475585938 -18.705039978027344 -14.589435577392578 -15.892086029052734
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:08ef1f881fcd130b64b6b3c53ae4af7d35415f6d144ea22a0559c38ef1d25f2b
3
+ size 1740904889
run_pretrain.py ADDED
@@ -0,0 +1,659 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
3
+ # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
4
+ #
5
+ # Licensed under the Apache License, Version 2.0 (the "License");
6
+ # you may not use this file except in compliance with the License.
7
+ # You may obtain a copy of the License at
8
+ #
9
+ # http://www.apache.org/licenses/LICENSE-2.0
10
+ #
11
+ # Unless required by applicable law or agreed to in writing, software
12
+ # distributed under the License is distributed on an "AS IS" BASIS,
13
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
+ # See the License for the specific language governing permissions and
15
+ # limitations under the License.
16
+
17
+ from __future__ import absolute_import
18
+ from __future__ import division
19
+ from __future__ import print_function
20
+
21
+ import argparse
22
+ import json
23
+ import logging
24
+ import os
25
+ import random
26
+ import wandb
27
+
28
+ import numpy as np
29
+ import torch
30
+ from torch.optim import AdamW
31
+ from torch.utils.data import DataLoader
32
+ from torch.utils.data import RandomSampler
33
+ from torch.utils.data import SequentialSampler
34
+ from torch.utils.data.distributed import DistributedSampler
35
+ from torch.utils.tensorboard import SummaryWriter
36
+ from tqdm import tqdm
37
+ from tqdm import trange
38
+ from transformers import DebertaV2Config
39
+ from transformers import DebertaV2ForMaskedLM
40
+ from transformers import DebertaV2Tokenizer
41
+ from transformers import RobertaConfig
42
+ from transformers import RobertaForMaskedLM
43
+ from transformers import RobertaTokenizer
44
+ from transformers import get_linear_schedule_with_warmup
45
+
46
+ from data_utils import accuracy
47
+ from data_utils import convert_examples_to_features
48
+ from data_utils import myprocessors
49
+
50
+ from evaluate_DeBERTa import eval_tasks
51
+ from evaluate_DeBERTa import main as evaluate_main
52
+
53
+ logger = logging.getLogger(__name__)
54
+
55
+ from transformers import MODEL_WITH_LM_HEAD_MAPPING
56
+
57
+ MODEL_CONFIG_CLASSES = list(MODEL_WITH_LM_HEAD_MAPPING.keys())
58
+ MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
59
+ MODEL_CLASSES = {
60
+ 'roberta-mlm': (RobertaConfig, RobertaForMaskedLM, RobertaTokenizer),
61
+ 'deberta-mlm': (DebertaV2Config, DebertaV2ForMaskedLM, DebertaV2Tokenizer)
62
+ }
63
+
64
+
65
+ class MyDataset(torch.utils.data.Dataset):
66
+
67
+ def __init__(self, data, pad_token, mask_token, max_words_to_mask):
68
+ self.data = data
69
+ self.pad_token = pad_token
70
+ self.mask_token = mask_token
71
+ self.max_words_to_mask = max_words_to_mask
72
+
73
+ def __len__(self):
74
+ return len(self.data)
75
+
76
+ def __getitem__(self, idx):
77
+ sample = self.data[idx]
78
+ return sample, self.pad_token, self.mask_token, self.max_words_to_mask
79
+
80
+
81
+ def mCollateFn(batch):
82
+ batch_input_ids = []
83
+ batch_input_mask = []
84
+ batch_input_labels = []
85
+ batch_label_ids = []
86
+ features = [b[0] for b in batch]
87
+ pad_token = batch[0][1]
88
+ mask_token = batch[0][2]
89
+ MAX_WORDS_TO_MASK = batch[0][3]
90
+ max_len = max([len(cand) for f in features for cand in f[0]])
91
+ for f in features:
92
+ batch_input_ids.append([])
93
+ batch_input_mask.append([])
94
+ batch_input_labels.append([])
95
+ batch_label_ids.append(f[2])
96
+ for i in range(len(f[0])):
97
+ masked_sequences = []
98
+ masked_labels = []
99
+ this_att_mask = []
100
+ sequence = f[0][i] + [pad_token] * (max_len - len(f[0][i]))
101
+ label_sequence = f[1][i] + [-100] * (max_len - len(f[1][i]))
102
+ valid_indices = [l_i for l_i, l in enumerate(label_sequence) if l != -100]
103
+ if len(valid_indices) > MAX_WORDS_TO_MASK:
104
+ rm_indices = random.sample(valid_indices, (len(valid_indices) - MAX_WORDS_TO_MASK))
105
+ label_sequence = [-100 if l_i in rm_indices else l for l_i, l in enumerate(label_sequence)]
106
+ for j, t in enumerate(label_sequence):
107
+ if t == -100:
108
+ continue
109
+ masked_sequences.append(sequence)
110
+ masked_labels.append([-100] * max_len)
111
+ else:
112
+ masked_sequences.append(sequence[:j] + [mask_token] + sequence[j + 1:])
113
+ masked_labels.append([-100] * j + [sequence[j]] + [-100] * (max_len - j - 1))
114
+ this_att_mask.append([1] * len(f[0][i]) + [0] * (max_len - len(f[0][i])))
115
+ batch_input_ids[-1].append(torch.tensor(masked_sequences, dtype=torch.long))
116
+ batch_input_mask[-1].append(torch.tensor(this_att_mask, dtype=torch.long))
117
+ batch_input_labels[-1].append(torch.tensor(masked_labels, dtype=torch.long))
118
+ return batch_input_ids, batch_input_mask, batch_input_labels, torch.tensor(batch_label_ids, dtype=torch.long)
119
+
120
+
121
+ def set_seed(args):
122
+ random.seed(args.seed)
123
+ np.random.seed(args.seed)
124
+ torch.manual_seed(args.seed)
125
+ if args.n_gpu > 0:
126
+ torch.cuda.manual_seed_all(args.seed)
127
+
128
+
129
+ def count_parameters(model):
130
+ return sum(p.numel() for p in model.parameters() if p.requires_grad)
131
+
132
+
133
+ def train(args, train_dataset, model, tokenizer, eval_dataset):
134
+ """ Train the model """
135
+ if args.local_rank in [-1, 0]:
136
+ tb_writer = SummaryWriter(os.path.join(args.output_dir, 'runs'))
137
+
138
+ args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu)
139
+ train_sampler = RandomSampler(train_dataset) if args.local_rank == -1 else DistributedSampler(train_dataset)
140
+ train_dataloader = DataLoader(train_dataset, sampler=train_sampler, batch_size=args.train_batch_size,
141
+ collate_fn=mCollateFn)
142
+
143
+ if args.max_steps > 0:
144
+ t_total = args.max_steps
145
+ args.num_train_epochs = args.max_steps // (len(train_dataloader) // args.gradient_accumulation_steps) + 1
146
+ else:
147
+ t_total = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs
148
+
149
+ # Prepare optimizer and schedule (linear warmup and decay)
150
+ no_decay = ['bias', 'LayerNorm.weight']
151
+ optimizer_grouped_parameters = [
152
+ {'params': [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],
153
+ 'weight_decay': args.weight_decay},
154
+ {'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
155
+ ]
156
+
157
+ warmup_steps = args.warmup_steps if args.warmup_steps != 0 else int(args.warmup_proportion * t_total)
158
+ logger.info("warm up steps = %d", warmup_steps)
159
+ optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon, betas=(0.9, 0.98))
160
+ scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=warmup_steps, num_training_steps=t_total)
161
+
162
+ if args.fp16:
163
+ try:
164
+ from apex import amp
165
+ except ImportError:
166
+ raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
167
+ model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level)
168
+
169
+ # multi-gpu training (should be after apex fp16 initialization)
170
+ if args.n_gpu > 1:
171
+ model = torch.nn.DataParallel(model)
172
+
173
+ # Distributed training (should be after apex fp16 initialization)
174
+ if args.local_rank != -1:
175
+ model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.local_rank],
176
+ output_device=args.local_rank,
177
+ find_unused_parameters=True)
178
+ # Train!
179
+ logger.info("***** Running training *****")
180
+ logger.info(" Num examples = %d", len(train_dataset))
181
+ logger.info(" Num Epochs = %d", args.num_train_epochs)
182
+ logger.info(" Instantaneous batch size per GPU = %d", args.per_gpu_train_batch_size)
183
+ logger.info(" Total train batch size (w. parallel, distributed & accumulation) = %d",
184
+ args.train_batch_size * args.gradient_accumulation_steps * (
185
+ torch.distributed.get_world_size() if args.local_rank != -1 else 1))
186
+ logger.info(" Gradient Accumulation steps = %d", args.gradient_accumulation_steps)
187
+ logger.info(" Total optimization steps = %d", t_total)
188
+
189
+ global_step = 0
190
+ tr_loss, logging_loss = 0.0, 0.0
191
+ model.zero_grad()
192
+ train_iterator = trange(int(args.num_train_epochs), desc="Epoch", disable=args.local_rank not in [-1, 0])
193
+ set_seed(args) # Added here for reproductibility (even between python 2 and 3)
194
+ curr_best = 0.0
195
+ CE = torch.nn.CrossEntropyLoss(reduction='none')
196
+ loss_fct = torch.nn.MultiMarginLoss(margin=args.margin)
197
+ for _ in train_iterator:
198
+ epoch_iterator = tqdm(train_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0])
199
+ for step, batch in tqdm(enumerate(epoch_iterator), desc=f"Train Epoch {_}"):
200
+ model.train()
201
+ num_cand = len(batch[0][0])
202
+ choice_loss = []
203
+ choice_seq_lens = np.array([0] + [len(c) for sample in batch[0] for c in sample])
204
+ choice_seq_lens = np.cumsum(choice_seq_lens)
205
+ input_ids = torch.cat([c for sample in batch[0] for c in sample], dim=0).to(args.device)
206
+ att_mask = torch.cat([c for sample in batch[1] for c in sample], dim=0).to(args.device)
207
+ input_labels = torch.cat([c for sample in batch[2] for c in sample], dim=0).to(args.device)
208
+
209
+ if len(input_ids) < args.max_sequence_per_time:
210
+ inputs = {'input_ids': input_ids,
211
+ 'attention_mask': att_mask}
212
+ outputs = model(**inputs)
213
+ ce_loss = CE(outputs[0].view(-1, outputs[0].size(-1)), input_labels.view(-1))
214
+ ce_loss = ce_loss.view(outputs[0].size(0), -1).sum(1)
215
+ else:
216
+ ce_loss = []
217
+ for chunk in range(0, len(input_ids), args.max_sequence_per_time):
218
+ inputs = {'input_ids': input_ids[chunk:chunk + args.max_sequence_per_time],
219
+ 'attention_mask': att_mask[chunk:chunk + args.max_sequence_per_time]}
220
+ outputs = model(**inputs)
221
+ tmp_ce_loss = CE(outputs[0].view(-1, outputs[0].size(-1)),
222
+ input_labels[chunk:chunk + args.max_sequence_per_time].view(-1))
223
+ tmp_ce_loss = tmp_ce_loss.view(outputs[0].size(0), -1).sum(1)
224
+ ce_loss.append(tmp_ce_loss)
225
+ ce_loss = torch.cat(ce_loss, dim=0)
226
+ # all tokens are valid
227
+ for c_i in range(len(choice_seq_lens) - 1):
228
+ start = choice_seq_lens[c_i]
229
+ end = choice_seq_lens[c_i + 1]
230
+ choice_loss.append(-ce_loss[start:end].sum() / (end - start))
231
+
232
+ choice_loss = torch.stack(choice_loss)
233
+ choice_loss = choice_loss.view(-1, num_cand)
234
+ loss = loss_fct(choice_loss, batch[3].to(args.device))
235
+
236
+ if args.n_gpu > 1:
237
+ loss = loss.mean() # mean() to average on multi-gpu parallel training
238
+ if args.gradient_accumulation_steps > 1:
239
+ loss = loss / args.gradient_accumulation_steps
240
+
241
+ if args.fp16:
242
+ with amp.scale_loss(loss, optimizer) as scaled_loss:
243
+ scaled_loss.backward()
244
+ else:
245
+ loss.backward()
246
+
247
+ tr_loss += loss.item()
248
+
249
+ if (step + 1) % args.gradient_accumulation_steps == 0:
250
+ optimizer.step()
251
+ scheduler.step() # Update learning rate schedule
252
+ model.zero_grad()
253
+ global_step += 1
254
+
255
+ if args.local_rank in [-1, 0] and args.logging_steps > 0 and global_step % args.logging_steps == 0:
256
+ # Log metrics
257
+ tb_writer.add_scalar('lr', scheduler.get_last_lr()[0], global_step)
258
+ tb_writer.add_scalar('loss', (tr_loss - logging_loss) / args.logging_steps, global_step)
259
+ tb_writer.add_scalar('Batch_loss', loss.item() * args.gradient_accumulation_steps, global_step)
260
+ logger.info(" global_step = %s, average loss = %s", global_step,
261
+ (tr_loss - logging_loss) / args.logging_steps)
262
+ wandb.log({"train/loss":loss.item()})
263
+ logging_loss = tr_loss
264
+
265
+ if args.local_rank == -1 and args.evaluate_during_training and global_step % args.save_steps == 0:
266
+ torch.cuda.empty_cache()
267
+ results = evaluate(args, model, tokenizer, eval_dataset)
268
+ wandb.log({"eval/"+k:v for k,v in results.items()})
269
+ for key, value in results.items():
270
+ tb_writer.add_scalar('eval_{}'.format(key), value, global_step)
271
+ if results['acc'] > curr_best:
272
+ curr_best = results['acc']
273
+ print("At iteration {}, best acc is {}".format(global_step, curr_best))
274
+ # Save model checkpoint
275
+ output_dir = args.output_dir
276
+ if not os.path.exists(output_dir):
277
+ os.makedirs(output_dir)
278
+ model_to_save = model.module if hasattr(model,
279
+ 'module') else model # Take care of distributed/parallel training
280
+ model_to_save.save_pretrained(output_dir)
281
+ tokenizer.save_pretrained(output_dir)
282
+ torch.save(args, os.path.join(output_dir, 'training_args.bin'))
283
+ logger.info("Saving model checkpoint to %s", output_dir)
284
+
285
+ if args.max_steps > 0 and global_step > args.max_steps:
286
+ epoch_iterator.close()
287
+ break
288
+ if args.max_steps > 0 and global_step > args.max_steps:
289
+ train_iterator.close()
290
+ break
291
+ results = evaluate(args, model, tokenizer, eval_dataset)
292
+ for key, value in results.items():
293
+ tb_writer.add_scalar('eval_{}'.format(key), value, global_step)
294
+ if results['acc'] > curr_best:
295
+ curr_best = results['acc']
296
+ # Save model checkpoint
297
+ output_dir = args.output_dir
298
+ if not os.path.exists(output_dir):
299
+ os.makedirs(output_dir)
300
+ model_to_save = model.module if hasattr(model,
301
+ 'module') else model # Take care of distributed/parallel training
302
+ model_to_save.save_pretrained(output_dir)
303
+ tokenizer.save_pretrained(output_dir)
304
+ torch.save(args, os.path.join(output_dir, 'training_args.bin'))
305
+ logger.info("Saving model checkpoint to %s", output_dir)
306
+ if args.local_rank in [-1, 0]:
307
+ tb_writer.close()
308
+ return global_step, tr_loss / global_step
309
+
310
+
311
+ def save_logits(logits_all, filename):
312
+ with open(filename, "w") as f:
313
+ for i in range(len(logits_all)):
314
+ for j in range(len(logits_all[i])):
315
+ f.write(str(logits_all[i][j]))
316
+ if j == len(logits_all[i]) - 1:
317
+ f.write("\n")
318
+ else:
319
+ f.write(" ")
320
+
321
+
322
+ def evaluate(args, model, tokenizer, eval_dataset):
323
+ results = {}
324
+ if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]:
325
+ os.makedirs(args.output_dir)
326
+
327
+ args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu)
328
+ # Note that DistributedSampler samples randomly
329
+ eval_sampler = SequentialSampler(eval_dataset) if args.local_rank == -1 else DistributedSampler(eval_dataset)
330
+ eval_dataloader = DataLoader(eval_dataset, sampler=eval_sampler, batch_size=args.eval_batch_size,
331
+ collate_fn=mCollateFn)
332
+
333
+ # Eval!
334
+ logger.info("***** Running evaluation *****")
335
+ logger.info(" Num examples = %d", len(eval_dataset))
336
+ logger.info(" Batch size = %d", args.eval_batch_size)
337
+ CE = torch.nn.CrossEntropyLoss(reduction='none')
338
+ preds = []
339
+ out_label_ids = []
340
+ for batch in tqdm(eval_dataloader, desc="Evaluating"):
341
+ model.eval()
342
+ with torch.no_grad():
343
+ num_cand = len(batch[0][0])
344
+ choice_loss = []
345
+ choice_seq_lens = np.array([0] + [len(c) for sample in batch[0] for c in sample])
346
+ choice_seq_lens = np.cumsum(choice_seq_lens)
347
+ input_ids = torch.cat([c for sample in batch[0] for c in sample], dim=0).to(args.device)
348
+ att_mask = torch.cat([c for sample in batch[1] for c in sample], dim=0).to(args.device)
349
+ input_labels = torch.cat([c for sample in batch[2] for c in sample], dim=0).to(args.device)
350
+ if len(input_ids) < args.max_sequence_per_time:
351
+ inputs = {'input_ids': input_ids,
352
+ 'attention_mask': att_mask}
353
+ outputs = model(**inputs)
354
+ ce_loss = CE(outputs[0].view(-1, outputs[0].size(-1)), input_labels.view(-1))
355
+ ce_loss = ce_loss.view(outputs[0].size(0), -1).sum(1)
356
+ else:
357
+ ce_loss = []
358
+ for chunk in range(0, len(input_ids), args.max_sequence_per_time):
359
+ inputs = {'input_ids': input_ids[chunk:chunk + args.max_sequence_per_time],
360
+ 'attention_mask': att_mask[chunk:chunk + args.max_sequence_per_time]}
361
+ outputs = model(**inputs)
362
+ tmp_ce_loss = CE(outputs[0].view(-1, outputs[0].size(-1)),
363
+ input_labels[chunk:chunk + args.max_sequence_per_time].view(-1))
364
+ tmp_ce_loss = tmp_ce_loss.view(outputs[0].size(0), -1).sum(1)
365
+ ce_loss.append(tmp_ce_loss)
366
+ ce_loss = torch.cat(ce_loss, dim=0)
367
+ for c_i in range(len(choice_seq_lens) - 1):
368
+ start = choice_seq_lens[c_i]
369
+ end = choice_seq_lens[c_i + 1]
370
+ choice_loss.append(-ce_loss[start:end].sum() / (end - start))
371
+ choice_loss = torch.stack(choice_loss)
372
+ choice_loss = choice_loss.view(-1, num_cand)
373
+ preds.append(choice_loss)
374
+ out_label_ids.append(batch[3].numpy())
375
+ preds = torch.cat(preds, dim=0).cpu().numpy()
376
+ save_logits(preds.tolist(), os.path.join(args.output_dir, args.logits_file))
377
+ preds = np.argmax(preds, axis=1)
378
+ result = accuracy(preds, np.concatenate(out_label_ids, axis=0))
379
+ results.update(result)
380
+ output_eval_file = os.path.join(args.output_dir, args.results_file)
381
+ with open(output_eval_file, "w") as writer:
382
+ logger.info("***** Eval results *****")
383
+ for key in sorted(result.keys()):
384
+ print("%s = %s\n" % (key, str(result[key])))
385
+ logger.info(" %s = %s", key, str(result[key]))
386
+ writer.write("%s = %s\n" % (key, str(result[key])))
387
+ return results
388
+
389
+
390
+ def write_data(filename, data):
391
+ with open(filename, 'w') as fout:
392
+ for sample in data:
393
+ fout.write(json.dumps(sample))
394
+ fout.write('\n')
395
+
396
+
397
+ def load_and_cache_examples(args, task, tokenizer, evaluate=False):
398
+ if args.local_rank not in [-1, 0] and not evaluate:
399
+ torch.distributed.barrier() # Make sure only the first process in distributed training process the dataset, and the others will use the cache
400
+ processor = myprocessors[task](args)
401
+ cached_features_file = os.path.join(args.output_dir, 'cached_{}_{}_{}_{}'.format(
402
+ 'dev' if evaluate else 'train',
403
+ str(args.model_type),
404
+ str(args.max_seq_length),
405
+ str(task)))
406
+ if os.path.exists(cached_features_file): # remove evaluate
407
+ print("loading cache file from", cached_features_file)
408
+ features = torch.load(cached_features_file)
409
+ else:
410
+ print("re-processing feature")
411
+ examples = processor.get_dev_examples() if evaluate else processor.get_train_examples()
412
+ features = convert_examples_to_features(examples, tokenizer, max_length=args.max_seq_length)
413
+ # if evaluate:
414
+ torch.save(features, cached_features_file)
415
+ if args.local_rank == 0 and not evaluate:
416
+ torch.distributed.barrier() # Make sure only the first process in distributed training process the dataset, and the others will use the cache
417
+ print('max_words_to_mask is %s for pretraining tasks %s' % (args.max_words_to_mask, task))
418
+ return MyDataset(features, tokenizer.pad_token_id, tokenizer.mask_token_id, args.max_words_to_mask)
419
+
420
+
421
+ def main():
422
+ parser = argparse.ArgumentParser()
423
+
424
+ ## Required parameters
425
+ parser.add_argument("--train_file", default=None, type=str, required=True,
426
+ help="The train file name")
427
+ parser.add_argument("--dev_file", default=None, type=str, required=True,
428
+ help="The dev file name")
429
+ parser.add_argument("--model_type", default=None, type=str, required=True,
430
+ help="Model type selected in the list: " + ", ".join(MODEL_CLASSES.keys()))
431
+ parser.add_argument("--model_name_or_path", default=None, type=str, required=True,
432
+ help="Path to pre-trained model or shortcut name selected in the list: " + ", ".join(
433
+ MODEL_TYPES))
434
+ parser.add_argument("--config_name", default="", type=str,
435
+ help="Pretrained config name or path if not the same as model_name")
436
+ parser.add_argument("--tokenizer_name", default="", type=str,
437
+ help="Pretrained tokenizer name or path if not the same as model_name")
438
+ parser.add_argument("--cache_dir", default=".cache", type=str,
439
+ help="Where do you want to store the pre-trained models downloaded")
440
+ parser.add_argument("--task_name", default=None, type=str, required=True,
441
+ help="The name of the task to train selected in the list: " + ", ".join(myprocessors.keys()))
442
+ parser.add_argument("--output_dir", default=None, type=str, required=True,
443
+ help="The output directory where the model predictions and checkpoints will be written.")
444
+
445
+ ## Other parameters
446
+ parser.add_argument("--second_train_file", default=None, type=str,
447
+ help="Used when combining ATOMIC and CWWV")
448
+ parser.add_argument("--second_dev_file", default=None, type=str,
449
+ help="Used when combining ATOMIC and CWWV")
450
+ parser.add_argument("--max_seq_length", default=128, type=int,
451
+ help="The maximum total input sequence length after tokenization. Sequences longer "
452
+ "than this will be truncated, sequences shorter will be padded.")
453
+ parser.add_argument("--max_words_to_mask", default=6, type=int,
454
+ help="The maximum number of tokens to mask when computing scores")
455
+ parser.add_argument("--max_sequence_per_time", default=80, type=int,
456
+ help="The maximum number of sequences to feed into the model")
457
+ parser.add_argument("--do_train", action='store_true',
458
+ help="Whether to run training.")
459
+ parser.add_argument("--do_eval", action='store_true',
460
+ help="Whether to run eval on the dev set.")
461
+ parser.add_argument("--do_ext_eval", action='store_true',
462
+ help="Whether to run external eval on the downstream mcqa datasets.")
463
+ parser.add_argument("--evaluate_during_training", action='store_true',
464
+ help="Run evaluation during training at each logging step.")
465
+ parser.add_argument("--do_lower_case", action='store_true',
466
+ help="Set this flag if you are using an uncased model.")
467
+ parser.add_argument("--per_gpu_train_batch_size", default=1, type=int,
468
+ help="Batch size per GPU/CPU for training.")
469
+ parser.add_argument("--per_gpu_eval_batch_size", default=1, type=int,
470
+ help="Batch size per GPU/CPU for evaluation.")
471
+ parser.add_argument('--gradient_accumulation_steps', type=int, default=1,
472
+ help="Number of updates steps to accumulate before performing a backward/update pass.")
473
+ parser.add_argument("--margin", default=1.0, type=float,
474
+ help="The margin for ranking loss")
475
+ parser.add_argument("--learning_rate", default=1e-5, type=float,
476
+ help="The initial learning rate for Adam.")
477
+ parser.add_argument("--weight_decay", default=0.01, type=float,
478
+ help="Weight deay if we apply some.")
479
+ parser.add_argument("--adam_epsilon", default=1e-6, type=float,
480
+ help="Epsilon for Adam optimizer.")
481
+ parser.add_argument("--max_grad_norm", default=1.0, type=float,
482
+ help="Max gradient norm.")
483
+ parser.add_argument("--num_train_epochs", default=1.0, type=float,
484
+ help="Total number of training epochs to perform.")
485
+ parser.add_argument("--max_steps", default=-1, type=int,
486
+ help="If > 0: set total number of training steps to perform. Override num_train_epochs.")
487
+ parser.add_argument("--warmup_steps", default=0, type=int,
488
+ help="Linear warmup over warmup_steps.")
489
+ parser.add_argument("--warmup_proportion", default=0.05, type=float,
490
+ help="Linear warmup over warmup proportion.")
491
+ parser.add_argument('--logging_steps', type=int, default=50,
492
+ help="Log every X updates steps.")
493
+ parser.add_argument('--save_steps', type=int, default=50,
494
+ help="Save checkpoint every X updates steps.")
495
+ parser.add_argument("--logits_file", default='logits_test.txt', type=str,
496
+ help="The file where prediction logits will be written")
497
+ parser.add_argument("--results_file", default='eval_results.txt', type=str,
498
+ help="The file where eval results will be written")
499
+ parser.add_argument("--no_cuda", action='store_true',
500
+ help="Avoid using CUDA when available")
501
+ parser.add_argument('--overwrite_output_dir', action='store_true',
502
+ help="Overwrite the content of the output directory")
503
+ parser.add_argument('--seed', type=int, default=42,
504
+ help="random seed for initialization")
505
+ parser.add_argument('--fp16', action='store_true',
506
+ help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit")
507
+ parser.add_argument('--fp16_opt_level', type=str, default='O1',
508
+ help="For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."
509
+ "See details at https://nvidia.github.io/apex/amp.html")
510
+ parser.add_argument("--local_rank", type=int, default=-1,
511
+ help="For distributed training: local_rank")
512
+ parser.add_argument('--server_ip', type=str, default='', help="For distant debugging.")
513
+ parser.add_argument('--server_port', type=str, default='', help="For distant debugging.")
514
+
515
+ ### for extrinsic evaluation
516
+
517
+ parser.add_argument("--eval_output_dir", default="./output/eval_results", type=str, required=True,
518
+ help="output of the predictions")
519
+
520
+ args = parser.parse_args()
521
+
522
+ wandb.init(project="car_mcqa", config=args)
523
+
524
+ if os.path.exists(args.output_dir) and os.listdir(
525
+ args.output_dir) and not args.overwrite_output_dir and args.do_train:
526
+ raise ValueError(
527
+ "Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome.".format(
528
+ args.output_dir))
529
+ if not os.path.exists(args.output_dir):
530
+ os.makedirs(args.output_dir)
531
+
532
+ # Setup CUDA, GPU & distributed training
533
+ if args.local_rank == -1 or args.no_cuda:
534
+ device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
535
+ args.n_gpu = torch.cuda.device_count()
536
+ else: # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
537
+ torch.cuda.set_device(args.local_rank)
538
+ device = torch.device("cuda", args.local_rank)
539
+ torch.distributed.init_process_group(backend='nccl')
540
+ args.n_gpu = 1
541
+ args.device = device
542
+
543
+ if args.do_train:
544
+ for handler in logging.root.handlers[:]:
545
+ logging.root.removeHandler(handler)
546
+ # Setup logging
547
+ if args.do_train:
548
+ log_file = os.path.join(args.output_dir, 'train.log')
549
+ logging.basicConfig(format='%(asctime)s - %(levelname)s - %(name)s - %(message)s',
550
+ datefmt='%m/%d/%Y %H:%M:%S',
551
+ level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN,
552
+ filename=log_file)
553
+ logger.warning("Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
554
+ args.local_rank, device, args.n_gpu, bool(args.local_rank != -1), args.fp16)
555
+ os.system("cp run_pretrain.py %s" % os.path.join(args.output_dir, 'run_pretrain.py'))
556
+ os.system("cp data_utils.py %s" % os.path.join(args.output_dir, 'data_utils.py'))
557
+
558
+ # Set seed
559
+ set_seed(args)
560
+ args.task_name = args.task_name.lower()
561
+ if args.task_name not in myprocessors:
562
+ raise ValueError("Task not found: %s" % (args.task_name))
563
+
564
+ args.model_type = args.model_type.lower()
565
+ config_class, model_class, tokenizer_class = MODEL_CLASSES[args.model_type]
566
+ config = config_class.from_pretrained(args.config_name if args.config_name else args.model_name_or_path,
567
+ finetuning_task=args.task_name, cache_dir=args.cache_dir)
568
+ tokenizer = tokenizer_class.from_pretrained(args.tokenizer_name if args.tokenizer_name else args.model_name_or_path,
569
+ do_lower_case=args.do_lower_case, cache_dir=args.cache_dir)
570
+ model = model_class.from_pretrained(args.model_name_or_path, from_tf=bool('.ckpt' in args.model_name_or_path),
571
+ config=config, cache_dir=args.cache_dir)
572
+
573
+ count = count_parameters(model)
574
+ print("number of params", count)
575
+
576
+ if args.local_rank == 0:
577
+ torch.distributed.barrier() # Make sure only the first process in distributed training will download model & vocab
578
+
579
+ model.to(args.device)
580
+
581
+ logger.info("Training/evaluation parameters %s", args)
582
+
583
+ print("loading eval set")
584
+ eval_dataset = load_and_cache_examples(args, args.task_name, tokenizer, evaluate=True)
585
+ print("num of eval set", len(eval_dataset))
586
+
587
+ if args.do_train:
588
+ init_result = evaluate(args, model, tokenizer, eval_dataset)
589
+ print(init_result)
590
+
591
+ if args.do_train:
592
+ print("loading training set")
593
+ train_dataset = load_and_cache_examples(args, args.task_name, tokenizer, evaluate=False)
594
+ print("num train examples", len(train_dataset))
595
+ global_step, tr_loss = train(args, train_dataset, model, tokenizer, eval_dataset)
596
+ logger.info(" global_step = %s, average loss = %s", global_step, tr_loss)
597
+
598
+ # Evaluation
599
+
600
+ results = {}
601
+ if args.do_eval:
602
+ tokenizer = tokenizer_class.from_pretrained(args.output_dir, do_lower_case=args.do_lower_case)
603
+ model = model_class.from_pretrained(args.output_dir)
604
+ model.eval()
605
+ model.to(args.device)
606
+ result = evaluate(args, model, tokenizer, eval_dataset)
607
+
608
+
609
+ # do extrinsic evaluation
610
+
611
+ if args.do_ext_eval:
612
+ del model
613
+ import gc
614
+ gc.collect()
615
+ torch.cuda.empty_cache()
616
+
617
+
618
+ ext_results = {}
619
+ ext_task_avg_acc = 0
620
+
621
+ for task_name, dataset_path in eval_tasks:
622
+ eval_args = argparse.Namespace()
623
+ eval_args.dataset_file = dataset_path
624
+ eval_args.lm = args.output_dir
625
+ eval_args.out_dir = os.path.join(args.eval_output_dir, os.path.basename( args.output_dir))
626
+ eval_args.device = 0
627
+ eval_args.reader = task_name
628
+ eval_args.overwrite_output_dir = args.overwrite_output_dir
629
+ eval_args.cache_dir = None
630
+ if task_name in ["socialiqa", "winogrande", "piqa", "commonsenseqa", "anli"]:
631
+ acc = evaluate_main(eval_args)
632
+ ext_results[task_name] = acc
633
+ ext_task_avg_acc += acc
634
+ else:
635
+ tokenizer = tokenizer_class.from_pretrained(args.output_dir, do_lower_case=args.do_lower_case)
636
+ model = model_class.from_pretrained(args.output_dir)
637
+ model.eval()
638
+ model.to(args.device)
639
+
640
+ # load data
641
+ examples = []
642
+ with open(dataset_path, "r") as f:
643
+ for row in tqdm(f):
644
+ sample = json.loads(row)
645
+ examples.append(sample)
646
+ features = convert_examples_to_features(examples, tokenizer, max_length=args.max_seq_length)
647
+ eval_dataset = MyDataset(features, tokenizer.pad_token_id, tokenizer.mask_token_id, args.max_words_to_mask)
648
+ result = evaluate(args, model, tokenizer, eval_dataset)
649
+ ext_results[task_name] = result['acc']
650
+
651
+ ext_results['avg'] = ext_task_avg_acc / 5
652
+
653
+
654
+ wandb.log({"ext/"+task_name:acc for task_name, acc in ext_results.items()})
655
+
656
+ # return results
657
+
658
+ if __name__ == "__main__":
659
+ main()
runs/events.out.tfevents.1696030376.car-2i-100k-name-seed101-5e-6-0-0.28.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fa047531aca9a5c6a3f42669cbaabf4bdeca5754bfbfbc15fdc873d816d158f8
3
+ size 53212
special_tokens_map.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": "[CLS]",
3
+ "cls_token": "[CLS]",
4
+ "eos_token": "[SEP]",
5
+ "mask_token": "[MASK]",
6
+ "pad_token": "[PAD]",
7
+ "sep_token": "[SEP]",
8
+ "unk_token": "[UNK]"
9
+ }
spm.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c679fbf93643d19aab7ee10c0b99e460bdbc02fedf34b92b05af343b4af586fd
3
+ size 2464616
tokenizer_config.json ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": "[CLS]",
3
+ "clean_up_tokenization_spaces": true,
4
+ "cls_token": "[CLS]",
5
+ "do_lower_case": false,
6
+ "eos_token": "[SEP]",
7
+ "mask_token": "[MASK]",
8
+ "model_max_length": 1000000000000000019884624838656,
9
+ "pad_token": "[PAD]",
10
+ "sep_token": "[SEP]",
11
+ "sp_model_kwargs": {},
12
+ "split_by_punct": false,
13
+ "tokenizer_class": "DebertaV2Tokenizer",
14
+ "unk_token": "[UNK]",
15
+ "vocab_type": "spm"
16
+ }
train.log ADDED
@@ -0,0 +1,878 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 09/29/2023 23:17:38 - WARNING - __main__ - Process rank: -1, device: cuda, n_gpu: 1, distributed training: False, 16-bits training: False
2
+ 09/29/2023 23:17:49 - INFO - __main__ - Training/evaluation parameters Namespace(train_file='../../../data/mcqa/atomic/train_atmc_2i_100k_name.jsonl', dev_file='../../../data/mcqa/atomic/dev_atmc_SyntheticQA_10k.jsonl', model_type='deberta-mlm', model_name_or_path='microsoft/deberta-v3-large', config_name='', tokenizer_name='', cache_dir='.cache', task_name='atomic', output_dir='output/Output_ATOMIC-pseudo-wWC/car_2i/deberta-v3-large_car_2i_name_100k_seed_101_5e-6', second_train_file=None, second_dev_file=None, max_seq_length=128, max_words_to_mask=6, max_sequence_per_time=80, do_train=True, do_eval=True, do_ext_eval=True, evaluate_during_training=True, do_lower_case=False, per_gpu_train_batch_size=2, per_gpu_eval_batch_size=32, gradient_accumulation_steps=16, margin=1.0, learning_rate=5e-06, weight_decay=0.01, adam_epsilon=1e-06, max_grad_norm=1.0, num_train_epochs=1.0, max_steps=-1, warmup_steps=0, warmup_proportion=0.05, logging_steps=50, save_steps=200, logits_file='logits_test.txt', results_file='eval_results.txt', no_cuda=False, overwrite_output_dir=False, seed=101, fp16=False, fp16_opt_level='O1', local_rank=-1, server_ip='', server_port='', eval_output_dir='./eval_results', n_gpu=1, device=device(type='cuda'))
3
+ 09/29/2023 23:17:58 - INFO - __main__ - ***** Running evaluation *****
4
+ 09/29/2023 23:17:58 - INFO - __main__ - Num examples = 10000
5
+ 09/29/2023 23:17:58 - INFO - __main__ - Batch size = 32
6
+ 09/29/2023 23:22:13 - INFO - __main__ - ***** Eval results *****
7
+ 09/29/2023 23:22:13 - INFO - __main__ - acc = 0.3356
8
+ 09/29/2023 23:32:56 - INFO - __main__ - warm up steps = 916
9
+ 09/29/2023 23:32:56 - INFO - __main__ - ***** Running training *****
10
+ 09/29/2023 23:32:56 - INFO - __main__ - Num examples = 586778
11
+ 09/29/2023 23:32:56 - INFO - __main__ - Num Epochs = 1
12
+ 09/29/2023 23:32:56 - INFO - __main__ - Instantaneous batch size per GPU = 2
13
+ 09/29/2023 23:32:56 - INFO - __main__ - Total train batch size (w. parallel, distributed & accumulation) = 32
14
+ 09/29/2023 23:32:56 - INFO - __main__ - Gradient Accumulation steps = 16
15
+ 09/29/2023 23:32:56 - INFO - __main__ - Total optimization steps = 18336
16
+ 09/29/2023 23:36:55 - INFO - __main__ - global_step = 50, average loss = 0.6978485188353807
17
+ 09/29/2023 23:41:05 - INFO - __main__ - global_step = 100, average loss = 0.6761001783981919
18
+ 09/29/2023 23:45:18 - INFO - __main__ - global_step = 150, average loss = 0.6527128890505992
19
+ 09/29/2023 23:49:15 - INFO - __main__ - global_step = 200, average loss = 0.6255776268531917
20
+ 09/29/2023 23:49:16 - INFO - __main__ - ***** Running evaluation *****
21
+ 09/29/2023 23:49:16 - INFO - __main__ - Num examples = 10000
22
+ 09/29/2023 23:49:16 - INFO - __main__ - Batch size = 32
23
+ 09/29/2023 23:53:34 - INFO - __main__ - ***** Eval results *****
24
+ 09/29/2023 23:53:34 - INFO - __main__ - acc = 0.3839
25
+ 09/29/2023 23:54:05 - INFO - __main__ - Saving model checkpoint to output/Output_ATOMIC-pseudo-wWC/car_2i/deberta-v3-large_car_2i_name_100k_seed_101_5e-6
26
+ 09/29/2023 23:58:03 - INFO - __main__ - global_step = 250, average loss = 0.5687153974524699
27
+ 09/30/2023 00:02:07 - INFO - __main__ - global_step = 300, average loss = 0.4650766727951122
28
+ 09/30/2023 00:06:15 - INFO - __main__ - global_step = 350, average loss = 0.344281620121983
29
+ 09/30/2023 00:10:25 - INFO - __main__ - global_step = 400, average loss = 0.2641717765412432
30
+ 09/30/2023 00:10:26 - INFO - __main__ - ***** Running evaluation *****
31
+ 09/30/2023 00:10:26 - INFO - __main__ - Num examples = 10000
32
+ 09/30/2023 00:10:26 - INFO - __main__ - Batch size = 32
33
+ 09/30/2023 00:14:45 - INFO - __main__ - ***** Eval results *****
34
+ 09/30/2023 00:14:45 - INFO - __main__ - acc = 0.6657
35
+ 09/30/2023 00:15:14 - INFO - __main__ - Saving model checkpoint to output/Output_ATOMIC-pseudo-wWC/car_2i/deberta-v3-large_car_2i_name_100k_seed_101_5e-6
36
+ 09/30/2023 00:19:09 - INFO - __main__ - global_step = 450, average loss = 0.203622583138349
37
+ 09/30/2023 00:23:15 - INFO - __main__ - global_step = 500, average loss = 0.19167841194193896
38
+ 09/30/2023 00:27:33 - INFO - __main__ - global_step = 550, average loss = 0.1768511165331256
39
+ 09/30/2023 00:31:46 - INFO - __main__ - global_step = 600, average loss = 0.17364913663874176
40
+ 09/30/2023 00:31:47 - INFO - __main__ - ***** Running evaluation *****
41
+ 09/30/2023 00:31:47 - INFO - __main__ - Num examples = 10000
42
+ 09/30/2023 00:31:47 - INFO - __main__ - Batch size = 32
43
+ 09/30/2023 00:36:06 - INFO - __main__ - ***** Eval results *****
44
+ 09/30/2023 00:36:06 - INFO - __main__ - acc = 0.7383
45
+ 09/30/2023 00:36:35 - INFO - __main__ - Saving model checkpoint to output/Output_ATOMIC-pseudo-wWC/car_2i/deberta-v3-large_car_2i_name_100k_seed_101_5e-6
46
+ 09/30/2023 00:40:35 - INFO - __main__ - global_step = 650, average loss = 0.16046627445422929
47
+ 09/30/2023 00:44:50 - INFO - __main__ - global_step = 700, average loss = 0.15604460480608395
48
+ 09/30/2023 00:49:12 - INFO - __main__ - global_step = 750, average loss = 0.16073274322843645
49
+ 09/30/2023 00:53:44 - INFO - __main__ - global_step = 800, average loss = 0.15695772335122457
50
+ 09/30/2023 00:53:44 - INFO - __main__ - ***** Running evaluation *****
51
+ 09/30/2023 00:53:44 - INFO - __main__ - Num examples = 10000
52
+ 09/30/2023 00:53:44 - INFO - __main__ - Batch size = 32
53
+ 09/30/2023 00:58:03 - INFO - __main__ - ***** Eval results *****
54
+ 09/30/2023 00:58:03 - INFO - __main__ - acc = 0.7684
55
+ 09/30/2023 00:58:33 - INFO - __main__ - Saving model checkpoint to output/Output_ATOMIC-pseudo-wWC/car_2i/deberta-v3-large_car_2i_name_100k_seed_101_5e-6
56
+ 09/30/2023 01:02:32 - INFO - __main__ - global_step = 850, average loss = 0.14848782167286118
57
+ 09/30/2023 01:06:57 - INFO - __main__ - global_step = 900, average loss = 0.12806821554375347
58
+ 09/30/2023 01:11:28 - INFO - __main__ - global_step = 950, average loss = 0.1180885765995481
59
+ 09/30/2023 01:15:52 - INFO - __main__ - global_step = 1000, average loss = 0.13545685631077503
60
+ 09/30/2023 01:15:53 - INFO - __main__ - ***** Running evaluation *****
61
+ 09/30/2023 01:15:53 - INFO - __main__ - Num examples = 10000
62
+ 09/30/2023 01:15:53 - INFO - __main__ - Batch size = 32
63
+ 09/30/2023 01:20:11 - INFO - __main__ - ***** Eval results *****
64
+ 09/30/2023 01:20:11 - INFO - __main__ - acc = 0.7644
65
+ 09/30/2023 01:24:17 - INFO - __main__ - global_step = 1050, average loss = 0.11866092401789502
66
+ 09/30/2023 01:28:20 - INFO - __main__ - global_step = 1100, average loss = 0.12610675325471676
67
+ 09/30/2023 01:32:47 - INFO - __main__ - global_step = 1150, average loss = 0.10549746582400985
68
+ 09/30/2023 01:37:16 - INFO - __main__ - global_step = 1200, average loss = 0.12280375221620489
69
+ 09/30/2023 01:37:17 - INFO - __main__ - ***** Running evaluation *****
70
+ 09/30/2023 01:37:17 - INFO - __main__ - Num examples = 10000
71
+ 09/30/2023 01:37:17 - INFO - __main__ - Batch size = 32
72
+ 09/30/2023 01:41:35 - INFO - __main__ - ***** Eval results *****
73
+ 09/30/2023 01:41:35 - INFO - __main__ - acc = 0.7802
74
+ 09/30/2023 01:42:04 - INFO - __main__ - Saving model checkpoint to output/Output_ATOMIC-pseudo-wWC/car_2i/deberta-v3-large_car_2i_name_100k_seed_101_5e-6
75
+ 09/30/2023 01:46:00 - INFO - __main__ - global_step = 1250, average loss = 0.11540970739923068
76
+ 09/30/2023 01:50:18 - INFO - __main__ - global_step = 1300, average loss = 0.1098322441923665
77
+ 09/30/2023 01:54:50 - INFO - __main__ - global_step = 1350, average loss = 0.12102181358681265
78
+ 09/30/2023 01:59:20 - INFO - __main__ - global_step = 1400, average loss = 0.11920341529325014
79
+ 09/30/2023 01:59:20 - INFO - __main__ - ***** Running evaluation *****
80
+ 09/30/2023 01:59:20 - INFO - __main__ - Num examples = 10000
81
+ 09/30/2023 01:59:20 - INFO - __main__ - Batch size = 32
82
+ 09/30/2023 02:03:40 - INFO - __main__ - ***** Eval results *****
83
+ 09/30/2023 02:03:40 - INFO - __main__ - acc = 0.7991
84
+ 09/30/2023 02:04:09 - INFO - __main__ - Saving model checkpoint to output/Output_ATOMIC-pseudo-wWC/car_2i/deberta-v3-large_car_2i_name_100k_seed_101_5e-6
85
+ 09/30/2023 02:08:14 - INFO - __main__ - global_step = 1450, average loss = 0.12416476066496215
86
+ 09/30/2023 02:12:18 - INFO - __main__ - global_step = 1500, average loss = 0.11171700998882443
87
+ 09/30/2023 02:16:39 - INFO - __main__ - global_step = 1550, average loss = 0.11893717237122474
88
+ 09/30/2023 02:21:18 - INFO - __main__ - global_step = 1600, average loss = 0.11236542866332457
89
+ 09/30/2023 02:21:18 - INFO - __main__ - ***** Running evaluation *****
90
+ 09/30/2023 02:21:18 - INFO - __main__ - Num examples = 10000
91
+ 09/30/2023 02:21:18 - INFO - __main__ - Batch size = 32
92
+ 09/30/2023 02:25:38 - INFO - __main__ - ***** Eval results *****
93
+ 09/30/2023 02:25:38 - INFO - __main__ - acc = 0.7998
94
+ 09/30/2023 02:26:08 - INFO - __main__ - Saving model checkpoint to output/Output_ATOMIC-pseudo-wWC/car_2i/deberta-v3-large_car_2i_name_100k_seed_101_5e-6
95
+ 09/30/2023 02:30:17 - INFO - __main__ - global_step = 1650, average loss = 0.11477049457775138
96
+ 09/30/2023 02:34:26 - INFO - __main__ - global_step = 1700, average loss = 0.10185962059051235
97
+ 09/30/2023 02:38:45 - INFO - __main__ - global_step = 1750, average loss = 0.08941184240770554
98
+ 09/30/2023 02:43:11 - INFO - __main__ - global_step = 1800, average loss = 0.12326178842118679
99
+ 09/30/2023 02:43:11 - INFO - __main__ - ***** Running evaluation *****
100
+ 09/30/2023 02:43:11 - INFO - __main__ - Num examples = 10000
101
+ 09/30/2023 02:43:11 - INFO - __main__ - Batch size = 32
102
+ 09/30/2023 02:47:30 - INFO - __main__ - ***** Eval results *****
103
+ 09/30/2023 02:47:30 - INFO - __main__ - acc = 0.7949
104
+ 09/30/2023 02:51:33 - INFO - __main__ - global_step = 1850, average loss = 0.1172889139153267
105
+ 09/30/2023 02:55:34 - INFO - __main__ - global_step = 1900, average loss = 0.11077741613984472
106
+ 09/30/2023 02:59:53 - INFO - __main__ - global_step = 1950, average loss = 0.11476122897045571
107
+ 09/30/2023 03:04:26 - INFO - __main__ - global_step = 2000, average loss = 0.11272342270149238
108
+ 09/30/2023 03:04:27 - INFO - __main__ - ***** Running evaluation *****
109
+ 09/30/2023 03:04:27 - INFO - __main__ - Num examples = 10000
110
+ 09/30/2023 03:04:27 - INFO - __main__ - Batch size = 32
111
+ 09/30/2023 03:08:46 - INFO - __main__ - ***** Eval results *****
112
+ 09/30/2023 03:08:46 - INFO - __main__ - acc = 0.796
113
+ 09/30/2023 03:12:55 - INFO - __main__ - global_step = 2050, average loss = 0.10859557473420864
114
+ 09/30/2023 03:17:10 - INFO - __main__ - global_step = 2100, average loss = 0.09719053598862956
115
+ 09/30/2023 03:21:26 - INFO - __main__ - global_step = 2150, average loss = 0.11492000469923369
116
+ 09/30/2023 03:25:59 - INFO - __main__ - global_step = 2200, average loss = 0.09694181648810626
117
+ 09/30/2023 03:25:59 - INFO - __main__ - ***** Running evaluation *****
118
+ 09/30/2023 03:25:59 - INFO - __main__ - Num examples = 10000
119
+ 09/30/2023 03:25:59 - INFO - __main__ - Batch size = 32
120
+ 09/30/2023 03:30:18 - INFO - __main__ - ***** Eval results *****
121
+ 09/30/2023 03:30:18 - INFO - __main__ - acc = 0.7974
122
+ 09/30/2023 03:34:20 - INFO - __main__ - global_step = 2250, average loss = 0.10450371610718548
123
+ 09/30/2023 03:38:29 - INFO - __main__ - global_step = 2300, average loss = 0.09968944377507796
124
+ 09/30/2023 03:42:35 - INFO - __main__ - global_step = 2350, average loss = 0.09726969640512834
125
+ 09/30/2023 03:46:47 - INFO - __main__ - global_step = 2400, average loss = 0.10790286644703884
126
+ 09/30/2023 03:46:48 - INFO - __main__ - ***** Running evaluation *****
127
+ 09/30/2023 03:46:48 - INFO - __main__ - Num examples = 10000
128
+ 09/30/2023 03:46:48 - INFO - __main__ - Batch size = 32
129
+ 09/30/2023 03:51:06 - INFO - __main__ - ***** Eval results *****
130
+ 09/30/2023 03:51:06 - INFO - __main__ - acc = 0.8019
131
+ 09/30/2023 03:51:36 - INFO - __main__ - Saving model checkpoint to output/Output_ATOMIC-pseudo-wWC/car_2i/deberta-v3-large_car_2i_name_100k_seed_101_5e-6
132
+ 09/30/2023 03:55:37 - INFO - __main__ - global_step = 2450, average loss = 0.0904800341839109
133
+ 09/30/2023 03:59:49 - INFO - __main__ - global_step = 2500, average loss = 0.09749648973207513
134
+ 09/30/2023 04:04:09 - INFO - __main__ - global_step = 2550, average loss = 0.09015977876108082
135
+ 09/30/2023 04:08:36 - INFO - __main__ - global_step = 2600, average loss = 0.11385933604056846
136
+ 09/30/2023 04:08:37 - INFO - __main__ - ***** Running evaluation *****
137
+ 09/30/2023 04:08:37 - INFO - __main__ - Num examples = 10000
138
+ 09/30/2023 04:08:37 - INFO - __main__ - Batch size = 32
139
+ 09/30/2023 04:12:54 - INFO - __main__ - ***** Eval results *****
140
+ 09/30/2023 04:12:54 - INFO - __main__ - acc = 0.8079
141
+ 09/30/2023 04:13:24 - INFO - __main__ - Saving model checkpoint to output/Output_ATOMIC-pseudo-wWC/car_2i/deberta-v3-large_car_2i_name_100k_seed_101_5e-6
142
+ 09/30/2023 04:17:30 - INFO - __main__ - global_step = 2650, average loss = 0.09506087936344557
143
+ 09/30/2023 04:21:44 - INFO - __main__ - global_step = 2700, average loss = 0.09819057766188052
144
+ 09/30/2023 04:25:56 - INFO - __main__ - global_step = 2750, average loss = 0.09318019706217456
145
+ 09/30/2023 04:30:01 - INFO - __main__ - global_step = 2800, average loss = 0.08744580631115241
146
+ 09/30/2023 04:30:02 - INFO - __main__ - ***** Running evaluation *****
147
+ 09/30/2023 04:30:02 - INFO - __main__ - Num examples = 10000
148
+ 09/30/2023 04:30:02 - INFO - __main__ - Batch size = 32
149
+ 09/30/2023 04:34:20 - INFO - __main__ - ***** Eval results *****
150
+ 09/30/2023 04:34:20 - INFO - __main__ - acc = 0.8088
151
+ 09/30/2023 04:34:50 - INFO - __main__ - Saving model checkpoint to output/Output_ATOMIC-pseudo-wWC/car_2i/deberta-v3-large_car_2i_name_100k_seed_101_5e-6
152
+ 09/30/2023 04:39:07 - INFO - __main__ - global_step = 2850, average loss = 0.10302798340337177
153
+ 09/30/2023 04:43:20 - INFO - __main__ - global_step = 2900, average loss = 0.09180921425198903
154
+ 09/30/2023 04:47:38 - INFO - __main__ - global_step = 2950, average loss = 0.09286653973598731
155
+ 09/30/2023 04:52:11 - INFO - __main__ - global_step = 3000, average loss = 0.09590554324422555
156
+ 09/30/2023 04:52:12 - INFO - __main__ - ***** Running evaluation *****
157
+ 09/30/2023 04:52:12 - INFO - __main__ - Num examples = 10000
158
+ 09/30/2023 04:52:12 - INFO - __main__ - Batch size = 32
159
+ 09/30/2023 04:56:30 - INFO - __main__ - ***** Eval results *****
160
+ 09/30/2023 04:56:30 - INFO - __main__ - acc = 0.8082
161
+ 09/30/2023 05:00:20 - INFO - __main__ - global_step = 3050, average loss = 0.0994117746003758
162
+ 09/30/2023 05:04:34 - INFO - __main__ - global_step = 3100, average loss = 0.08591548198470264
163
+ 09/30/2023 05:09:00 - INFO - __main__ - global_step = 3150, average loss = 0.09913339292746969
164
+ 09/30/2023 05:13:29 - INFO - __main__ - global_step = 3200, average loss = 0.09553639550766092
165
+ 09/30/2023 05:13:29 - INFO - __main__ - ***** Running evaluation *****
166
+ 09/30/2023 05:13:29 - INFO - __main__ - Num examples = 10000
167
+ 09/30/2023 05:13:29 - INFO - __main__ - Batch size = 32
168
+ 09/30/2023 05:17:46 - INFO - __main__ - ***** Eval results *****
169
+ 09/30/2023 05:17:46 - INFO - __main__ - acc = 0.8013
170
+ 09/30/2023 05:21:55 - INFO - __main__ - global_step = 3250, average loss = 0.0932181820196638
171
+ 09/30/2023 05:25:59 - INFO - __main__ - global_step = 3300, average loss = 0.08498929560689703
172
+ 09/30/2023 05:30:21 - INFO - __main__ - global_step = 3350, average loss = 0.10022641647228739
173
+ 09/30/2023 05:34:47 - INFO - __main__ - global_step = 3400, average loss = 0.08711659569285984
174
+ 09/30/2023 05:34:47 - INFO - __main__ - ***** Running evaluation *****
175
+ 09/30/2023 05:34:47 - INFO - __main__ - Num examples = 10000
176
+ 09/30/2023 05:34:47 - INFO - __main__ - Batch size = 32
177
+ 09/30/2023 05:39:06 - INFO - __main__ - ***** Eval results *****
178
+ 09/30/2023 05:39:06 - INFO - __main__ - acc = 0.8085
179
+ 09/30/2023 05:43:04 - INFO - __main__ - global_step = 3450, average loss = 0.08860307957234909
180
+ 09/30/2023 05:47:15 - INFO - __main__ - global_step = 3500, average loss = 0.09122671313540195
181
+ 09/30/2023 05:51:40 - INFO - __main__ - global_step = 3550, average loss = 0.09726192618174537
182
+ 09/30/2023 05:56:06 - INFO - __main__ - global_step = 3600, average loss = 0.09295479882246582
183
+ 09/30/2023 05:56:07 - INFO - __main__ - ***** Running evaluation *****
184
+ 09/30/2023 05:56:07 - INFO - __main__ - Num examples = 10000
185
+ 09/30/2023 05:56:07 - INFO - __main__ - Batch size = 32
186
+ 09/30/2023 06:00:25 - INFO - __main__ - ***** Eval results *****
187
+ 09/30/2023 06:00:25 - INFO - __main__ - acc = 0.7981
188
+ 09/30/2023 06:04:25 - INFO - __main__ - global_step = 3650, average loss = 0.0850781474460382
189
+ 09/30/2023 06:08:29 - INFO - __main__ - global_step = 3700, average loss = 0.08510007355012932
190
+ 09/30/2023 06:12:45 - INFO - __main__ - global_step = 3750, average loss = 0.09091129492127947
191
+ 09/30/2023 06:17:00 - INFO - __main__ - global_step = 3800, average loss = 0.08938177831689245
192
+ 09/30/2023 06:17:01 - INFO - __main__ - ***** Running evaluation *****
193
+ 09/30/2023 06:17:01 - INFO - __main__ - Num examples = 10000
194
+ 09/30/2023 06:17:01 - INFO - __main__ - Batch size = 32
195
+ 09/30/2023 06:21:19 - INFO - __main__ - ***** Eval results *****
196
+ 09/30/2023 06:21:19 - INFO - __main__ - acc = 0.8008
197
+ 09/30/2023 06:25:31 - INFO - __main__ - global_step = 3850, average loss = 0.09504610720792699
198
+ 09/30/2023 06:29:46 - INFO - __main__ - global_step = 3900, average loss = 0.0801623915314849
199
+ 09/30/2023 06:34:06 - INFO - __main__ - global_step = 3950, average loss = 0.08579662030970212
200
+ 09/30/2023 06:38:28 - INFO - __main__ - global_step = 4000, average loss = 0.09399219373066443
201
+ 09/30/2023 06:38:29 - INFO - __main__ - ***** Running evaluation *****
202
+ 09/30/2023 06:38:29 - INFO - __main__ - Num examples = 10000
203
+ 09/30/2023 06:38:29 - INFO - __main__ - Batch size = 32
204
+ 09/30/2023 06:42:47 - INFO - __main__ - ***** Eval results *****
205
+ 09/30/2023 06:42:47 - INFO - __main__ - acc = 0.8075
206
+ 09/30/2023 06:46:50 - INFO - __main__ - global_step = 4050, average loss = 0.07777188256899535
207
+ 09/30/2023 06:51:06 - INFO - __main__ - global_step = 4100, average loss = 0.09610467369071557
208
+ 09/30/2023 06:55:28 - INFO - __main__ - global_step = 4150, average loss = 0.08811031442368403
209
+ 09/30/2023 07:00:00 - INFO - __main__ - global_step = 4200, average loss = 0.08664546085885377
210
+ 09/30/2023 07:00:01 - INFO - __main__ - ***** Running evaluation *****
211
+ 09/30/2023 07:00:01 - INFO - __main__ - Num examples = 10000
212
+ 09/30/2023 07:00:01 - INFO - __main__ - Batch size = 32
213
+ 09/30/2023 07:04:19 - INFO - __main__ - ***** Eval results *****
214
+ 09/30/2023 07:04:19 - INFO - __main__ - acc = 0.8193
215
+ 09/30/2023 07:04:50 - INFO - __main__ - Saving model checkpoint to output/Output_ATOMIC-pseudo-wWC/car_2i/deberta-v3-large_car_2i_name_100k_seed_101_5e-6
216
+ 09/30/2023 07:09:00 - INFO - __main__ - global_step = 4250, average loss = 0.0982984783052234
217
+ 09/30/2023 07:13:25 - INFO - __main__ - global_step = 4300, average loss = 0.08057821323724056
218
+ 09/30/2023 07:17:51 - INFO - __main__ - global_step = 4350, average loss = 0.08660443297441817
219
+ 09/30/2023 07:22:18 - INFO - __main__ - global_step = 4400, average loss = 0.09301655420538736
220
+ 09/30/2023 07:22:19 - INFO - __main__ - ***** Running evaluation *****
221
+ 09/30/2023 07:22:19 - INFO - __main__ - Num examples = 10000
222
+ 09/30/2023 07:22:19 - INFO - __main__ - Batch size = 32
223
+ 09/30/2023 07:26:36 - INFO - __main__ - ***** Eval results *****
224
+ 09/30/2023 07:26:36 - INFO - __main__ - acc = 0.8113
225
+ 09/30/2023 07:30:33 - INFO - __main__ - global_step = 4450, average loss = 0.08599573986270116
226
+ 09/30/2023 07:34:39 - INFO - __main__ - global_step = 4500, average loss = 0.08530666312639369
227
+ 09/30/2023 07:38:48 - INFO - __main__ - global_step = 4550, average loss = 0.0846066818782856
228
+ 09/30/2023 07:43:20 - INFO - __main__ - global_step = 4600, average loss = 0.0817996960383789
229
+ 09/30/2023 07:43:21 - INFO - __main__ - ***** Running evaluation *****
230
+ 09/30/2023 07:43:21 - INFO - __main__ - Num examples = 10000
231
+ 09/30/2023 07:43:21 - INFO - __main__ - Batch size = 32
232
+ 09/30/2023 07:47:39 - INFO - __main__ - ***** Eval results *****
233
+ 09/30/2023 07:47:39 - INFO - __main__ - acc = 0.82
234
+ 09/30/2023 07:48:09 - INFO - __main__ - Saving model checkpoint to output/Output_ATOMIC-pseudo-wWC/car_2i/deberta-v3-large_car_2i_name_100k_seed_101_5e-6
235
+ 09/30/2023 07:52:15 - INFO - __main__ - global_step = 4650, average loss = 0.09457363621040712
236
+ 09/30/2023 07:56:34 - INFO - __main__ - global_step = 4700, average loss = 0.09125612366977293
237
+ 09/30/2023 08:01:01 - INFO - __main__ - global_step = 4750, average loss = 0.08600258652179037
238
+ 09/30/2023 08:05:26 - INFO - __main__ - global_step = 4800, average loss = 0.09128527461645718
239
+ 09/30/2023 08:05:26 - INFO - __main__ - ***** Running evaluation *****
240
+ 09/30/2023 08:05:26 - INFO - __main__ - Num examples = 10000
241
+ 09/30/2023 08:05:26 - INFO - __main__ - Batch size = 32
242
+ 09/30/2023 08:09:45 - INFO - __main__ - ***** Eval results *****
243
+ 09/30/2023 08:09:45 - INFO - __main__ - acc = 0.8151
244
+ 09/30/2023 08:13:38 - INFO - __main__ - global_step = 4850, average loss = 0.09068508470605594
245
+ 09/30/2023 08:17:36 - INFO - __main__ - global_step = 4900, average loss = 0.08361487613161443
246
+ 09/30/2023 08:21:45 - INFO - __main__ - global_step = 4950, average loss = 0.09231334731652169
247
+ 09/30/2023 08:26:13 - INFO - __main__ - global_step = 5000, average loss = 0.09210781741610845
248
+ 09/30/2023 08:26:13 - INFO - __main__ - ***** Running evaluation *****
249
+ 09/30/2023 08:26:13 - INFO - __main__ - Num examples = 10000
250
+ 09/30/2023 08:26:13 - INFO - __main__ - Batch size = 32
251
+ 09/30/2023 08:30:31 - INFO - __main__ - ***** Eval results *****
252
+ 09/30/2023 08:30:31 - INFO - __main__ - acc = 0.8182
253
+ 09/30/2023 08:34:31 - INFO - __main__ - global_step = 5050, average loss = 0.0987089884125453
254
+ 09/30/2023 08:38:41 - INFO - __main__ - global_step = 5100, average loss = 0.08649987229902763
255
+ 09/30/2023 08:43:07 - INFO - __main__ - global_step = 5150, average loss = 0.08150071838943404
256
+ 09/30/2023 08:47:36 - INFO - __main__ - global_step = 5200, average loss = 0.09248840492458839
257
+ 09/30/2023 08:47:36 - INFO - __main__ - ***** Running evaluation *****
258
+ 09/30/2023 08:47:36 - INFO - __main__ - Num examples = 10000
259
+ 09/30/2023 08:47:36 - INFO - __main__ - Batch size = 32
260
+ 09/30/2023 08:51:54 - INFO - __main__ - ***** Eval results *****
261
+ 09/30/2023 08:51:54 - INFO - __main__ - acc = 0.8098
262
+ 09/30/2023 08:56:07 - INFO - __main__ - global_step = 5250, average loss = 0.08664297451652601
263
+ 09/30/2023 09:00:14 - INFO - __main__ - global_step = 5300, average loss = 0.0810040804851451
264
+ 09/30/2023 09:04:19 - INFO - __main__ - global_step = 5350, average loss = 0.08586231906258035
265
+ 09/30/2023 09:08:41 - INFO - __main__ - global_step = 5400, average loss = 0.06912091931983014
266
+ 09/30/2023 09:08:41 - INFO - __main__ - ***** Running evaluation *****
267
+ 09/30/2023 09:08:41 - INFO - __main__ - Num examples = 10000
268
+ 09/30/2023 09:08:41 - INFO - __main__ - Batch size = 32
269
+ 09/30/2023 09:12:59 - INFO - __main__ - ***** Eval results *****
270
+ 09/30/2023 09:12:59 - INFO - __main__ - acc = 0.8138
271
+ 09/30/2023 09:17:04 - INFO - __main__ - global_step = 5450, average loss = 0.08094093154666553
272
+ 09/30/2023 09:21:20 - INFO - __main__ - global_step = 5500, average loss = 0.08313021952490089
273
+ 09/30/2023 09:25:34 - INFO - __main__ - global_step = 5550, average loss = 0.08020198410889862
274
+ 09/30/2023 09:30:01 - INFO - __main__ - global_step = 5600, average loss = 0.08213623003844987
275
+ 09/30/2023 09:30:01 - INFO - __main__ - ***** Running evaluation *****
276
+ 09/30/2023 09:30:01 - INFO - __main__ - Num examples = 10000
277
+ 09/30/2023 09:30:01 - INFO - __main__ - Batch size = 32
278
+ 09/30/2023 09:34:19 - INFO - __main__ - ***** Eval results *****
279
+ 09/30/2023 09:34:19 - INFO - __main__ - acc = 0.8138
280
+ 09/30/2023 09:38:25 - INFO - __main__ - global_step = 5650, average loss = 0.0817357241499849
281
+ 09/30/2023 09:42:30 - INFO - __main__ - global_step = 5700, average loss = 0.07617272696845248
282
+ 09/30/2023 09:46:47 - INFO - __main__ - global_step = 5750, average loss = 0.08003306837461423
283
+ 09/30/2023 09:51:07 - INFO - __main__ - global_step = 5800, average loss = 0.08461861441275687
284
+ 09/30/2023 09:51:07 - INFO - __main__ - ***** Running evaluation *****
285
+ 09/30/2023 09:51:07 - INFO - __main__ - Num examples = 10000
286
+ 09/30/2023 09:51:07 - INFO - __main__ - Batch size = 32
287
+ 09/30/2023 09:55:24 - INFO - __main__ - ***** Eval results *****
288
+ 09/30/2023 09:55:24 - INFO - __main__ - acc = 0.819
289
+ 09/30/2023 09:59:31 - INFO - __main__ - global_step = 5850, average loss = 0.0827079386992773
290
+ 09/30/2023 10:03:45 - INFO - __main__ - global_step = 5900, average loss = 0.09033509934786707
291
+ 09/30/2023 10:08:04 - INFO - __main__ - global_step = 5950, average loss = 0.08679367909935536
292
+ 09/30/2023 10:12:29 - INFO - __main__ - global_step = 6000, average loss = 0.0677787430045646
293
+ 09/30/2023 10:12:30 - INFO - __main__ - ***** Running evaluation *****
294
+ 09/30/2023 10:12:30 - INFO - __main__ - Num examples = 10000
295
+ 09/30/2023 10:12:30 - INFO - __main__ - Batch size = 32
296
+ 09/30/2023 10:16:48 - INFO - __main__ - ***** Eval results *****
297
+ 09/30/2023 10:16:48 - INFO - __main__ - acc = 0.793
298
+ 09/30/2023 10:20:46 - INFO - __main__ - global_step = 6050, average loss = 0.07449474892706348
299
+ 09/30/2023 10:24:57 - INFO - __main__ - global_step = 6100, average loss = 0.08253852118214126
300
+ 09/30/2023 10:29:21 - INFO - __main__ - global_step = 6150, average loss = 0.07779288738580363
301
+ 09/30/2023 10:33:50 - INFO - __main__ - global_step = 6200, average loss = 0.08415637877900735
302
+ 09/30/2023 10:33:51 - INFO - __main__ - ***** Running evaluation *****
303
+ 09/30/2023 10:33:51 - INFO - __main__ - Num examples = 10000
304
+ 09/30/2023 10:33:51 - INFO - __main__ - Batch size = 32
305
+ 09/30/2023 10:38:09 - INFO - __main__ - ***** Eval results *****
306
+ 09/30/2023 10:38:09 - INFO - __main__ - acc = 0.8152
307
+ 09/30/2023 10:42:10 - INFO - __main__ - global_step = 6250, average loss = 0.0836084969737567
308
+ 09/30/2023 10:46:22 - INFO - __main__ - global_step = 6300, average loss = 0.09385589220066322
309
+ 09/30/2023 10:50:35 - INFO - __main__ - global_step = 6350, average loss = 0.09158665712571747
310
+ 09/30/2023 10:55:02 - INFO - __main__ - global_step = 6400, average loss = 0.0775194574438865
311
+ 09/30/2023 10:55:03 - INFO - __main__ - ***** Running evaluation *****
312
+ 09/30/2023 10:55:03 - INFO - __main__ - Num examples = 10000
313
+ 09/30/2023 10:55:03 - INFO - __main__ - Batch size = 32
314
+ 09/30/2023 10:59:20 - INFO - __main__ - ***** Eval results *****
315
+ 09/30/2023 10:59:20 - INFO - __main__ - acc = 0.8155
316
+ 09/30/2023 11:03:28 - INFO - __main__ - global_step = 6450, average loss = 0.08119687895305105
317
+ 09/30/2023 11:07:51 - INFO - __main__ - global_step = 6500, average loss = 0.07420433169674652
318
+ 09/30/2023 11:12:28 - INFO - __main__ - global_step = 6550, average loss = 0.06907126017362315
319
+ 09/30/2023 11:16:58 - INFO - __main__ - global_step = 6600, average loss = 0.07694708627823274
320
+ 09/30/2023 11:16:58 - INFO - __main__ - ***** Running evaluation *****
321
+ 09/30/2023 11:16:58 - INFO - __main__ - Num examples = 10000
322
+ 09/30/2023 11:16:58 - INFO - __main__ - Batch size = 32
323
+ 09/30/2023 11:21:17 - INFO - __main__ - ***** Eval results *****
324
+ 09/30/2023 11:21:17 - INFO - __main__ - acc = 0.8118
325
+ 09/30/2023 11:25:39 - INFO - __main__ - global_step = 6650, average loss = 0.07814562884639599
326
+ 09/30/2023 11:30:08 - INFO - __main__ - global_step = 6700, average loss = 0.08736841517616994
327
+ 09/30/2023 11:34:35 - INFO - __main__ - global_step = 6750, average loss = 0.08082478447904577
328
+ 09/30/2023 11:39:03 - INFO - __main__ - global_step = 6800, average loss = 0.07488631383661414
329
+ 09/30/2023 11:39:04 - INFO - __main__ - ***** Running evaluation *****
330
+ 09/30/2023 11:39:04 - INFO - __main__ - Num examples = 10000
331
+ 09/30/2023 11:39:04 - INFO - __main__ - Batch size = 32
332
+ 09/30/2023 11:43:23 - INFO - __main__ - ***** Eval results *****
333
+ 09/30/2023 11:43:23 - INFO - __main__ - acc = 0.8213
334
+ 09/30/2023 11:43:49 - INFO - __main__ - Saving model checkpoint to output/Output_ATOMIC-pseudo-wWC/car_2i/deberta-v3-large_car_2i_name_100k_seed_101_5e-6
335
+ 09/30/2023 11:47:44 - INFO - __main__ - global_step = 6850, average loss = 0.08088931010104716
336
+ 09/30/2023 11:51:57 - INFO - __main__ - global_step = 6900, average loss = 0.07495710194933053
337
+ 09/30/2023 11:56:20 - INFO - __main__ - global_step = 6950, average loss = 0.08142732598964358
338
+ 09/30/2023 12:00:40 - INFO - __main__ - global_step = 7000, average loss = 0.08055740728428645
339
+ 09/30/2023 12:00:41 - INFO - __main__ - ***** Running evaluation *****
340
+ 09/30/2023 12:00:41 - INFO - __main__ - Num examples = 10000
341
+ 09/30/2023 12:00:41 - INFO - __main__ - Batch size = 32
342
+ 09/30/2023 12:04:58 - INFO - __main__ - ***** Eval results *****
343
+ 09/30/2023 12:04:58 - INFO - __main__ - acc = 0.8081
344
+ 09/30/2023 12:08:49 - INFO - __main__ - global_step = 7050, average loss = 0.08094024127516604
345
+ 09/30/2023 12:13:05 - INFO - __main__ - global_step = 7100, average loss = 0.08965814252063865
346
+ 09/30/2023 12:17:22 - INFO - __main__ - global_step = 7150, average loss = 0.07722920090716798
347
+ 09/30/2023 12:21:45 - INFO - __main__ - global_step = 7200, average loss = 0.08899519631431758
348
+ 09/30/2023 12:21:46 - INFO - __main__ - ***** Running evaluation *****
349
+ 09/30/2023 12:21:46 - INFO - __main__ - Num examples = 10000
350
+ 09/30/2023 12:21:46 - INFO - __main__ - Batch size = 32
351
+ 09/30/2023 12:26:05 - INFO - __main__ - ***** Eval results *****
352
+ 09/30/2023 12:26:05 - INFO - __main__ - acc = 0.8124
353
+ 09/30/2023 12:30:21 - INFO - __main__ - global_step = 7250, average loss = 0.06652378371007217
354
+ 09/30/2023 12:34:39 - INFO - __main__ - global_step = 7300, average loss = 0.07190304783754982
355
+ 09/30/2023 12:39:04 - INFO - __main__ - global_step = 7350, average loss = 0.07759228288079612
356
+ 09/30/2023 12:43:26 - INFO - __main__ - global_step = 7400, average loss = 0.07959542326259907
357
+ 09/30/2023 12:43:27 - INFO - __main__ - ***** Running evaluation *****
358
+ 09/30/2023 12:43:27 - INFO - __main__ - Num examples = 10000
359
+ 09/30/2023 12:43:27 - INFO - __main__ - Batch size = 32
360
+ 09/30/2023 12:47:45 - INFO - __main__ - ***** Eval results *****
361
+ 09/30/2023 12:47:45 - INFO - __main__ - acc = 0.8246
362
+ 09/30/2023 12:48:12 - INFO - __main__ - Saving model checkpoint to output/Output_ATOMIC-pseudo-wWC/car_2i/deberta-v3-large_car_2i_name_100k_seed_101_5e-6
363
+ 09/30/2023 12:52:13 - INFO - __main__ - global_step = 7450, average loss = 0.07954016777908691
364
+ 09/30/2023 12:56:27 - INFO - __main__ - global_step = 7500, average loss = 0.06745836471483926
365
+ 09/30/2023 13:00:43 - INFO - __main__ - global_step = 7550, average loss = 0.07651237843449053
366
+ 09/30/2023 13:04:59 - INFO - __main__ - global_step = 7600, average loss = 0.08067735946224275
367
+ 09/30/2023 13:05:00 - INFO - __main__ - ***** Running evaluation *****
368
+ 09/30/2023 13:05:00 - INFO - __main__ - Num examples = 10000
369
+ 09/30/2023 13:05:00 - INFO - __main__ - Batch size = 32
370
+ 09/30/2023 13:09:19 - INFO - __main__ - ***** Eval results *****
371
+ 09/30/2023 13:09:19 - INFO - __main__ - acc = 0.8296
372
+ 09/30/2023 13:09:45 - INFO - __main__ - Saving model checkpoint to output/Output_ATOMIC-pseudo-wWC/car_2i/deberta-v3-large_car_2i_name_100k_seed_101_5e-6
373
+ 09/30/2023 13:13:52 - INFO - __main__ - global_step = 7650, average loss = 0.07473264377593296
374
+ 09/30/2023 13:18:02 - INFO - __main__ - global_step = 7700, average loss = 0.07815635729657515
375
+ 09/30/2023 13:22:14 - INFO - __main__ - global_step = 7750, average loss = 0.08072268578209332
376
+ 09/30/2023 13:26:29 - INFO - __main__ - global_step = 7800, average loss = 0.0779763015091885
377
+ 09/30/2023 13:26:30 - INFO - __main__ - ***** Running evaluation *****
378
+ 09/30/2023 13:26:30 - INFO - __main__ - Num examples = 10000
379
+ 09/30/2023 13:26:30 - INFO - __main__ - Batch size = 32
380
+ 09/30/2023 13:30:49 - INFO - __main__ - ***** Eval results *****
381
+ 09/30/2023 13:30:49 - INFO - __main__ - acc = 0.8052
382
+ 09/30/2023 13:34:56 - INFO - __main__ - global_step = 7850, average loss = 0.08846644978621043
383
+ 09/30/2023 13:39:08 - INFO - __main__ - global_step = 7900, average loss = 0.08965322268464661
384
+ 09/30/2023 13:43:18 - INFO - __main__ - global_step = 7950, average loss = 0.07646228883138974
385
+ 09/30/2023 13:47:34 - INFO - __main__ - global_step = 8000, average loss = 0.06746727024801658
386
+ 09/30/2023 13:47:35 - INFO - __main__ - ***** Running evaluation *****
387
+ 09/30/2023 13:47:35 - INFO - __main__ - Num examples = 10000
388
+ 09/30/2023 13:47:35 - INFO - __main__ - Batch size = 32
389
+ 09/30/2023 13:51:54 - INFO - __main__ - ***** Eval results *****
390
+ 09/30/2023 13:51:54 - INFO - __main__ - acc = 0.8243
391
+ 09/30/2023 13:56:06 - INFO - __main__ - global_step = 8050, average loss = 0.08350399916278547
392
+ 09/30/2023 14:00:19 - INFO - __main__ - global_step = 8100, average loss = 0.06798540580417466
393
+ 09/30/2023 14:04:46 - INFO - __main__ - global_step = 8150, average loss = 0.06554304141827742
394
+ 09/30/2023 14:09:04 - INFO - __main__ - global_step = 8200, average loss = 0.06514280185193229
395
+ 09/30/2023 14:09:05 - INFO - __main__ - ***** Running evaluation *****
396
+ 09/30/2023 14:09:05 - INFO - __main__ - Num examples = 10000
397
+ 09/30/2023 14:09:05 - INFO - __main__ - Batch size = 32
398
+ 09/30/2023 14:13:23 - INFO - __main__ - ***** Eval results *****
399
+ 09/30/2023 14:13:23 - INFO - __main__ - acc = 0.8146
400
+ 09/30/2023 14:17:36 - INFO - __main__ - global_step = 8250, average loss = 0.07990871949750726
401
+ 09/30/2023 14:21:47 - INFO - __main__ - global_step = 8300, average loss = 0.07364155332470546
402
+ 09/30/2023 14:25:52 - INFO - __main__ - global_step = 8350, average loss = 0.08377082656683342
403
+ 09/30/2023 14:30:12 - INFO - __main__ - global_step = 8400, average loss = 0.07954915106311092
404
+ 09/30/2023 14:30:13 - INFO - __main__ - ***** Running evaluation *****
405
+ 09/30/2023 14:30:13 - INFO - __main__ - Num examples = 10000
406
+ 09/30/2023 14:30:13 - INFO - __main__ - Batch size = 32
407
+ 09/30/2023 14:34:32 - INFO - __main__ - ***** Eval results *****
408
+ 09/30/2023 14:34:32 - INFO - __main__ - acc = 0.8148
409
+ 09/30/2023 14:38:42 - INFO - __main__ - global_step = 8450, average loss = 0.07030039706209208
410
+ 09/30/2023 14:42:55 - INFO - __main__ - global_step = 8500, average loss = 0.08003189989045495
411
+ 09/30/2023 14:47:10 - INFO - __main__ - global_step = 8550, average loss = 0.07293609037540591
412
+ 09/30/2023 14:51:25 - INFO - __main__ - global_step = 8600, average loss = 0.07146468496641319
413
+ 09/30/2023 14:51:25 - INFO - __main__ - ***** Running evaluation *****
414
+ 09/30/2023 14:51:25 - INFO - __main__ - Num examples = 10000
415
+ 09/30/2023 14:51:25 - INFO - __main__ - Batch size = 32
416
+ 09/30/2023 14:55:43 - INFO - __main__ - ***** Eval results *****
417
+ 09/30/2023 14:55:43 - INFO - __main__ - acc = 0.8119
418
+ 09/30/2023 14:59:48 - INFO - __main__ - global_step = 8650, average loss = 0.08003535972715327
419
+ 09/30/2023 15:03:55 - INFO - __main__ - global_step = 8700, average loss = 0.06597046624192444
420
+ 09/30/2023 15:08:18 - INFO - __main__ - global_step = 8750, average loss = 0.07181154116915422
421
+ 09/30/2023 15:12:39 - INFO - __main__ - global_step = 8800, average loss = 0.068559150480869
422
+ 09/30/2023 15:12:40 - INFO - __main__ - ***** Running evaluation *****
423
+ 09/30/2023 15:12:40 - INFO - __main__ - Num examples = 10000
424
+ 09/30/2023 15:12:40 - INFO - __main__ - Batch size = 32
425
+ 09/30/2023 15:16:57 - INFO - __main__ - ***** Eval results *****
426
+ 09/30/2023 15:16:57 - INFO - __main__ - acc = 0.8027
427
+ 09/30/2023 15:20:57 - INFO - __main__ - global_step = 8850, average loss = 0.08192624930914462
428
+ 09/30/2023 15:25:08 - INFO - __main__ - global_step = 8900, average loss = 0.06891920362562814
429
+ 09/30/2023 15:29:21 - INFO - __main__ - global_step = 8950, average loss = 0.07183136703236868
430
+ 09/30/2023 15:33:32 - INFO - __main__ - global_step = 9000, average loss = 0.07862215217377524
431
+ 09/30/2023 15:33:32 - INFO - __main__ - ***** Running evaluation *****
432
+ 09/30/2023 15:33:32 - INFO - __main__ - Num examples = 10000
433
+ 09/30/2023 15:33:32 - INFO - __main__ - Batch size = 32
434
+ 09/30/2023 15:37:51 - INFO - __main__ - ***** Eval results *****
435
+ 09/30/2023 15:37:51 - INFO - __main__ - acc = 0.8145
436
+ 09/30/2023 15:42:00 - INFO - __main__ - global_step = 9050, average loss = 0.08039317954942816
437
+ 09/30/2023 15:46:04 - INFO - __main__ - global_step = 9100, average loss = 0.07681855217753991
438
+ 09/30/2023 15:50:19 - INFO - __main__ - global_step = 9150, average loss = 0.06908466021588539
439
+ 09/30/2023 15:54:39 - INFO - __main__ - global_step = 9200, average loss = 0.07285123934067088
440
+ 09/30/2023 15:54:40 - INFO - __main__ - ***** Running evaluation *****
441
+ 09/30/2023 15:54:40 - INFO - __main__ - Num examples = 10000
442
+ 09/30/2023 15:54:40 - INFO - __main__ - Batch size = 32
443
+ 09/30/2023 15:58:58 - INFO - __main__ - ***** Eval results *****
444
+ 09/30/2023 15:58:58 - INFO - __main__ - acc = 0.8157
445
+ 09/30/2023 16:03:12 - INFO - __main__ - global_step = 9250, average loss = 0.07457796319955377
446
+ 09/30/2023 16:07:29 - INFO - __main__ - global_step = 9300, average loss = 0.08509899367534672
447
+ 09/30/2023 16:11:53 - INFO - __main__ - global_step = 9350, average loss = 0.07013603730166323
448
+ 09/30/2023 16:16:21 - INFO - __main__ - global_step = 9400, average loss = 0.07017059165984392
449
+ 09/30/2023 16:16:22 - INFO - __main__ - ***** Running evaluation *****
450
+ 09/30/2023 16:16:22 - INFO - __main__ - Num examples = 10000
451
+ 09/30/2023 16:16:22 - INFO - __main__ - Batch size = 32
452
+ 09/30/2023 16:20:40 - INFO - __main__ - ***** Eval results *****
453
+ 09/30/2023 16:20:40 - INFO - __main__ - acc = 0.8141
454
+ 09/30/2023 16:24:51 - INFO - __main__ - global_step = 9450, average loss = 0.0831688746976215
455
+ 09/30/2023 16:29:17 - INFO - __main__ - global_step = 9500, average loss = 0.08576202854252188
456
+ 09/30/2023 16:33:37 - INFO - __main__ - global_step = 9550, average loss = 0.08213058317254764
457
+ 09/30/2023 16:37:58 - INFO - __main__ - global_step = 9600, average loss = 0.072965028858016
458
+ 09/30/2023 16:37:58 - INFO - __main__ - ***** Running evaluation *****
459
+ 09/30/2023 16:37:58 - INFO - __main__ - Num examples = 10000
460
+ 09/30/2023 16:37:58 - INFO - __main__ - Batch size = 32
461
+ 09/30/2023 16:42:15 - INFO - __main__ - ***** Eval results *****
462
+ 09/30/2023 16:42:15 - INFO - __main__ - acc = 0.8122
463
+ 09/30/2023 16:46:15 - INFO - __main__ - global_step = 9650, average loss = 0.07125714480011083
464
+ 09/30/2023 16:50:19 - INFO - __main__ - global_step = 9700, average loss = 0.07434062254025775
465
+ 09/30/2023 16:54:30 - INFO - __main__ - global_step = 9750, average loss = 0.07218598224179004
466
+ 09/30/2023 16:58:52 - INFO - __main__ - global_step = 9800, average loss = 0.06753908861952368
467
+ 09/30/2023 16:58:52 - INFO - __main__ - ***** Running evaluation *****
468
+ 09/30/2023 16:58:52 - INFO - __main__ - Num examples = 10000
469
+ 09/30/2023 16:58:52 - INFO - __main__ - Batch size = 32
470
+ 09/30/2023 17:03:10 - INFO - __main__ - ***** Eval results *****
471
+ 09/30/2023 17:03:10 - INFO - __main__ - acc = 0.8208
472
+ 09/30/2023 17:07:12 - INFO - __main__ - global_step = 9850, average loss = 0.0787789156648796
473
+ 09/30/2023 17:11:24 - INFO - __main__ - global_step = 9900, average loss = 0.06863431145990034
474
+ 09/30/2023 17:15:44 - INFO - __main__ - global_step = 9950, average loss = 0.0729100130192819
475
+ 09/30/2023 17:20:01 - INFO - __main__ - global_step = 10000, average loss = 0.07118722895695101
476
+ 09/30/2023 17:20:01 - INFO - __main__ - ***** Running evaluation *****
477
+ 09/30/2023 17:20:01 - INFO - __main__ - Num examples = 10000
478
+ 09/30/2023 17:20:01 - INFO - __main__ - Batch size = 32
479
+ 09/30/2023 17:24:20 - INFO - __main__ - ***** Eval results *****
480
+ 09/30/2023 17:24:20 - INFO - __main__ - acc = 0.8212
481
+ 09/30/2023 17:28:25 - INFO - __main__ - global_step = 10050, average loss = 0.06967489041242515
482
+ 09/30/2023 17:32:40 - INFO - __main__ - global_step = 10100, average loss = 0.07503812584323896
483
+ 09/30/2023 17:37:07 - INFO - __main__ - global_step = 10150, average loss = 0.07984486830362585
484
+ 09/30/2023 17:41:19 - INFO - __main__ - global_step = 10200, average loss = 0.06886661994401948
485
+ 09/30/2023 17:41:19 - INFO - __main__ - ***** Running evaluation *****
486
+ 09/30/2023 17:41:19 - INFO - __main__ - Num examples = 10000
487
+ 09/30/2023 17:41:19 - INFO - __main__ - Batch size = 32
488
+ 09/30/2023 17:45:37 - INFO - __main__ - ***** Eval results *****
489
+ 09/30/2023 17:45:37 - INFO - __main__ - acc = 0.8134
490
+ 09/30/2023 17:49:55 - INFO - __main__ - global_step = 10250, average loss = 0.07405807184350124
491
+ 09/30/2023 17:54:14 - INFO - __main__ - global_step = 10300, average loss = 0.08030594819738326
492
+ 09/30/2023 17:58:33 - INFO - __main__ - global_step = 10350, average loss = 0.08568550381663954
493
+ 09/30/2023 18:02:39 - INFO - __main__ - global_step = 10400, average loss = 0.08110691699486779
494
+ 09/30/2023 18:02:39 - INFO - __main__ - ***** Running evaluation *****
495
+ 09/30/2023 18:02:39 - INFO - __main__ - Num examples = 10000
496
+ 09/30/2023 18:02:39 - INFO - __main__ - Batch size = 32
497
+ 09/30/2023 18:07:00 - INFO - __main__ - ***** Eval results *****
498
+ 09/30/2023 18:07:00 - INFO - __main__ - acc = 0.8226
499
+ 09/30/2023 18:10:59 - INFO - __main__ - global_step = 10450, average loss = 0.07698049577564234
500
+ 09/30/2023 18:15:18 - INFO - __main__ - global_step = 10500, average loss = 0.07489776252514276
501
+ 09/30/2023 18:19:38 - INFO - __main__ - global_step = 10550, average loss = 0.08084082975808997
502
+ 09/30/2023 18:24:06 - INFO - __main__ - global_step = 10600, average loss = 0.077233616621088
503
+ 09/30/2023 18:24:06 - INFO - __main__ - ***** Running evaluation *****
504
+ 09/30/2023 18:24:06 - INFO - __main__ - Num examples = 10000
505
+ 09/30/2023 18:24:06 - INFO - __main__ - Batch size = 32
506
+ 09/30/2023 18:28:26 - INFO - __main__ - ***** Eval results *****
507
+ 09/30/2023 18:28:26 - INFO - __main__ - acc = 0.8219
508
+ 09/30/2023 18:32:23 - INFO - __main__ - global_step = 10650, average loss = 0.0749396042097942
509
+ 09/30/2023 18:36:24 - INFO - __main__ - global_step = 10700, average loss = 0.07035453407006571
510
+ 09/30/2023 18:40:30 - INFO - __main__ - global_step = 10750, average loss = 0.0701333080389304
511
+ 09/30/2023 18:44:44 - INFO - __main__ - global_step = 10800, average loss = 0.06815460226869618
512
+ 09/30/2023 18:44:45 - INFO - __main__ - ***** Running evaluation *****
513
+ 09/30/2023 18:44:45 - INFO - __main__ - Num examples = 10000
514
+ 09/30/2023 18:44:45 - INFO - __main__ - Batch size = 32
515
+ 09/30/2023 18:49:04 - INFO - __main__ - ***** Eval results *****
516
+ 09/30/2023 18:49:04 - INFO - __main__ - acc = 0.8246
517
+ 09/30/2023 18:53:04 - INFO - __main__ - global_step = 10850, average loss = 0.06231740675430046
518
+ 09/30/2023 18:57:11 - INFO - __main__ - global_step = 10900, average loss = 0.07749273380759406
519
+ 09/30/2023 19:01:27 - INFO - __main__ - global_step = 10950, average loss = 0.07356921623417292
520
+ 09/30/2023 19:05:44 - INFO - __main__ - global_step = 11000, average loss = 0.06861940244401922
521
+ 09/30/2023 19:05:44 - INFO - __main__ - ***** Running evaluation *****
522
+ 09/30/2023 19:05:44 - INFO - __main__ - Num examples = 10000
523
+ 09/30/2023 19:05:44 - INFO - __main__ - Batch size = 32
524
+ 09/30/2023 19:10:04 - INFO - __main__ - ***** Eval results *****
525
+ 09/30/2023 19:10:04 - INFO - __main__ - acc = 0.8237
526
+ 09/30/2023 19:13:58 - INFO - __main__ - global_step = 11050, average loss = 0.07190075869159046
527
+ 09/30/2023 19:18:18 - INFO - __main__ - global_step = 11100, average loss = 0.07798185770014243
528
+ 09/30/2023 19:22:25 - INFO - __main__ - global_step = 11150, average loss = 0.05461175944059505
529
+ 09/30/2023 19:26:36 - INFO - __main__ - global_step = 11200, average loss = 0.07214928590841736
530
+ 09/30/2023 19:26:36 - INFO - __main__ - ***** Running evaluation *****
531
+ 09/30/2023 19:26:36 - INFO - __main__ - Num examples = 10000
532
+ 09/30/2023 19:26:36 - INFO - __main__ - Batch size = 32
533
+ 09/30/2023 19:30:56 - INFO - __main__ - ***** Eval results *****
534
+ 09/30/2023 19:30:56 - INFO - __main__ - acc = 0.8281
535
+ 09/30/2023 19:34:46 - INFO - __main__ - global_step = 11250, average loss = 0.07595877689196641
536
+ 09/30/2023 19:38:51 - INFO - __main__ - global_step = 11300, average loss = 0.06289271867310163
537
+ 09/30/2023 19:42:58 - INFO - __main__ - global_step = 11350, average loss = 0.07287138866693567
538
+ 09/30/2023 19:47:05 - INFO - __main__ - global_step = 11400, average loss = 0.0736375573805708
539
+ 09/30/2023 19:47:05 - INFO - __main__ - ***** Running evaluation *****
540
+ 09/30/2023 19:47:05 - INFO - __main__ - Num examples = 10000
541
+ 09/30/2023 19:47:05 - INFO - __main__ - Batch size = 32
542
+ 09/30/2023 19:51:26 - INFO - __main__ - ***** Eval results *****
543
+ 09/30/2023 19:51:26 - INFO - __main__ - acc = 0.8265
544
+ 09/30/2023 19:55:14 - INFO - __main__ - global_step = 11450, average loss = 0.07105860608404328
545
+ 09/30/2023 19:59:22 - INFO - __main__ - global_step = 11500, average loss = 0.07589100849851092
546
+ 09/30/2023 20:03:31 - INFO - __main__ - global_step = 11550, average loss = 0.07193597211022279
547
+ 09/30/2023 20:07:44 - INFO - __main__ - global_step = 11600, average loss = 0.0786158631305443
548
+ 09/30/2023 20:07:45 - INFO - __main__ - ***** Running evaluation *****
549
+ 09/30/2023 20:07:45 - INFO - __main__ - Num examples = 10000
550
+ 09/30/2023 20:07:45 - INFO - __main__ - Batch size = 32
551
+ 09/30/2023 20:12:05 - INFO - __main__ - ***** Eval results *****
552
+ 09/30/2023 20:12:05 - INFO - __main__ - acc = 0.8224
553
+ 09/30/2023 20:16:14 - INFO - __main__ - global_step = 11650, average loss = 0.07484395604304155
554
+ 09/30/2023 20:20:16 - INFO - __main__ - global_step = 11700, average loss = 0.07182746810896788
555
+ 09/30/2023 20:24:28 - INFO - __main__ - global_step = 11750, average loss = 0.06392118992527684
556
+ 09/30/2023 20:28:47 - INFO - __main__ - global_step = 11800, average loss = 0.06359485059540021
557
+ 09/30/2023 20:28:48 - INFO - __main__ - ***** Running evaluation *****
558
+ 09/30/2023 20:28:48 - INFO - __main__ - Num examples = 10000
559
+ 09/30/2023 20:28:48 - INFO - __main__ - Batch size = 32
560
+ 09/30/2023 20:33:07 - INFO - __main__ - ***** Eval results *****
561
+ 09/30/2023 20:33:07 - INFO - __main__ - acc = 0.8225
562
+ 09/30/2023 20:36:55 - INFO - __main__ - global_step = 11850, average loss = 0.06557874951142367
563
+ 09/30/2023 20:40:51 - INFO - __main__ - global_step = 11900, average loss = 0.06787695961887948
564
+ 09/30/2023 20:45:01 - INFO - __main__ - global_step = 11950, average loss = 0.07802391385892406
565
+ 09/30/2023 20:49:19 - INFO - __main__ - global_step = 12000, average loss = 0.062383338503277624
566
+ 09/30/2023 20:49:19 - INFO - __main__ - ***** Running evaluation *****
567
+ 09/30/2023 20:49:19 - INFO - __main__ - Num examples = 10000
568
+ 09/30/2023 20:49:19 - INFO - __main__ - Batch size = 32
569
+ 09/30/2023 20:53:41 - INFO - __main__ - ***** Eval results *****
570
+ 09/30/2023 20:53:41 - INFO - __main__ - acc = 0.8221
571
+ 09/30/2023 20:57:31 - INFO - __main__ - global_step = 12050, average loss = 0.07041985652205768
572
+ 09/30/2023 21:01:33 - INFO - __main__ - global_step = 12100, average loss = 0.07904728068271652
573
+ 09/30/2023 21:05:47 - INFO - __main__ - global_step = 12150, average loss = 0.07474817682654247
574
+ 09/30/2023 21:09:58 - INFO - __main__ - global_step = 12200, average loss = 0.07402907914118259
575
+ 09/30/2023 21:09:58 - INFO - __main__ - ***** Running evaluation *****
576
+ 09/30/2023 21:09:58 - INFO - __main__ - Num examples = 10000
577
+ 09/30/2023 21:09:58 - INFO - __main__ - Batch size = 32
578
+ 09/30/2023 21:14:19 - INFO - __main__ - ***** Eval results *****
579
+ 09/30/2023 21:14:19 - INFO - __main__ - acc = 0.8327
580
+ 09/30/2023 21:14:46 - INFO - __main__ - Saving model checkpoint to output/Output_ATOMIC-pseudo-wWC/car_2i/deberta-v3-large_car_2i_name_100k_seed_101_5e-6
581
+ 09/30/2023 21:18:46 - INFO - __main__ - global_step = 12250, average loss = 0.07039213450989337
582
+ 09/30/2023 21:22:59 - INFO - __main__ - global_step = 12300, average loss = 0.0842395970186044
583
+ 09/30/2023 21:27:05 - INFO - __main__ - global_step = 12350, average loss = 0.06603515204827999
584
+ 09/30/2023 21:31:22 - INFO - __main__ - global_step = 12400, average loss = 0.06760421821546515
585
+ 09/30/2023 21:31:22 - INFO - __main__ - ***** Running evaluation *****
586
+ 09/30/2023 21:31:22 - INFO - __main__ - Num examples = 10000
587
+ 09/30/2023 21:31:22 - INFO - __main__ - Batch size = 32
588
+ 09/30/2023 21:35:43 - INFO - __main__ - ***** Eval results *****
589
+ 09/30/2023 21:35:43 - INFO - __main__ - acc = 0.8208
590
+ 09/30/2023 21:39:33 - INFO - __main__ - global_step = 12450, average loss = 0.06917047601906233
591
+ 09/30/2023 21:43:44 - INFO - __main__ - global_step = 12500, average loss = 0.07573592953915068
592
+ 09/30/2023 21:48:03 - INFO - __main__ - global_step = 12550, average loss = 0.06653125052485848
593
+ 09/30/2023 21:52:22 - INFO - __main__ - global_step = 12600, average loss = 0.06815064429247286
594
+ 09/30/2023 21:52:23 - INFO - __main__ - ***** Running evaluation *****
595
+ 09/30/2023 21:52:23 - INFO - __main__ - Num examples = 10000
596
+ 09/30/2023 21:52:23 - INFO - __main__ - Batch size = 32
597
+ 09/30/2023 21:56:43 - INFO - __main__ - ***** Eval results *****
598
+ 09/30/2023 21:56:43 - INFO - __main__ - acc = 0.819
599
+ 09/30/2023 22:00:39 - INFO - __main__ - global_step = 12650, average loss = 0.07732899946378893
600
+ 09/30/2023 22:04:44 - INFO - __main__ - global_step = 12700, average loss = 0.06547158910783764
601
+ 09/30/2023 22:08:49 - INFO - __main__ - global_step = 12750, average loss = 0.0728905378174386
602
+ 09/30/2023 22:13:03 - INFO - __main__ - global_step = 12800, average loss = 0.07366545890477937
603
+ 09/30/2023 22:13:04 - INFO - __main__ - ***** Running evaluation *****
604
+ 09/30/2023 22:13:04 - INFO - __main__ - Num examples = 10000
605
+ 09/30/2023 22:13:04 - INFO - __main__ - Batch size = 32
606
+ 09/30/2023 22:17:25 - INFO - __main__ - ***** Eval results *****
607
+ 09/30/2023 22:17:25 - INFO - __main__ - acc = 0.8182
608
+ 09/30/2023 22:21:28 - INFO - __main__ - global_step = 12850, average loss = 0.06894337675126735
609
+ 09/30/2023 22:25:41 - INFO - __main__ - global_step = 12900, average loss = 0.07351460054007475
610
+ 09/30/2023 22:29:49 - INFO - __main__ - global_step = 12950, average loss = 0.0674650944762834
611
+ 09/30/2023 22:34:09 - INFO - __main__ - global_step = 13000, average loss = 0.07850258736492834
612
+ 09/30/2023 22:34:09 - INFO - __main__ - ***** Running evaluation *****
613
+ 09/30/2023 22:34:09 - INFO - __main__ - Num examples = 10000
614
+ 09/30/2023 22:34:09 - INFO - __main__ - Batch size = 32
615
+ 09/30/2023 22:38:30 - INFO - __main__ - ***** Eval results *****
616
+ 09/30/2023 22:38:30 - INFO - __main__ - acc = 0.8321
617
+ 09/30/2023 22:42:24 - INFO - __main__ - global_step = 13050, average loss = 0.07653208828101925
618
+ 09/30/2023 22:46:20 - INFO - __main__ - global_step = 13100, average loss = 0.06802368102005857
619
+ 09/30/2023 22:50:29 - INFO - __main__ - global_step = 13150, average loss = 0.06454230795552576
620
+ 09/30/2023 22:54:34 - INFO - __main__ - global_step = 13200, average loss = 0.07258539929578546
621
+ 09/30/2023 22:54:35 - INFO - __main__ - ***** Running evaluation *****
622
+ 09/30/2023 22:54:35 - INFO - __main__ - Num examples = 10000
623
+ 09/30/2023 22:54:35 - INFO - __main__ - Batch size = 32
624
+ 09/30/2023 22:58:54 - INFO - __main__ - ***** Eval results *****
625
+ 09/30/2023 22:58:54 - INFO - __main__ - acc = 0.8252
626
+ 09/30/2023 23:02:57 - INFO - __main__ - global_step = 13250, average loss = 0.07325911161562544
627
+ 09/30/2023 23:07:12 - INFO - __main__ - global_step = 13300, average loss = 0.06880584957727479
628
+ 09/30/2023 23:11:21 - INFO - __main__ - global_step = 13350, average loss = 0.07009069720297703
629
+ 09/30/2023 23:15:34 - INFO - __main__ - global_step = 13400, average loss = 0.07083460625182852
630
+ 09/30/2023 23:15:35 - INFO - __main__ - ***** Running evaluation *****
631
+ 09/30/2023 23:15:35 - INFO - __main__ - Num examples = 10000
632
+ 09/30/2023 23:15:35 - INFO - __main__ - Batch size = 32
633
+ 09/30/2023 23:19:56 - INFO - __main__ - ***** Eval results *****
634
+ 09/30/2023 23:19:56 - INFO - __main__ - acc = 0.813
635
+ 09/30/2023 23:23:55 - INFO - __main__ - global_step = 13450, average loss = 0.06977577161625959
636
+ 09/30/2023 23:27:49 - INFO - __main__ - global_step = 13500, average loss = 0.0730690676838276
637
+ 09/30/2023 23:31:51 - INFO - __main__ - global_step = 13550, average loss = 0.07233811266596604
638
+ 09/30/2023 23:35:53 - INFO - __main__ - global_step = 13600, average loss = 0.0773136636797426
639
+ 09/30/2023 23:35:54 - INFO - __main__ - ***** Running evaluation *****
640
+ 09/30/2023 23:35:54 - INFO - __main__ - Num examples = 10000
641
+ 09/30/2023 23:35:54 - INFO - __main__ - Batch size = 32
642
+ 09/30/2023 23:40:14 - INFO - __main__ - ***** Eval results *****
643
+ 09/30/2023 23:40:14 - INFO - __main__ - acc = 0.8254
644
+ 09/30/2023 23:44:18 - INFO - __main__ - global_step = 13650, average loss = 0.0625762648001546
645
+ 09/30/2023 23:48:29 - INFO - __main__ - global_step = 13700, average loss = 0.07835062241327251
646
+ 09/30/2023 23:52:47 - INFO - __main__ - global_step = 13750, average loss = 0.06917831582177314
647
+ 09/30/2023 23:57:06 - INFO - __main__ - global_step = 13800, average loss = 0.06653823942549934
648
+ 09/30/2023 23:57:07 - INFO - __main__ - ***** Running evaluation *****
649
+ 09/30/2023 23:57:07 - INFO - __main__ - Num examples = 10000
650
+ 09/30/2023 23:57:07 - INFO - __main__ - Batch size = 32
651
+ 10/01/2023 00:01:27 - INFO - __main__ - ***** Eval results *****
652
+ 10/01/2023 00:01:27 - INFO - __main__ - acc = 0.8231
653
+ 10/01/2023 00:05:24 - INFO - __main__ - global_step = 13850, average loss = 0.07134979092643334
654
+ 10/01/2023 00:09:31 - INFO - __main__ - global_step = 13900, average loss = 0.07882154490274842
655
+ 10/01/2023 00:13:33 - INFO - __main__ - global_step = 13950, average loss = 0.067044138008132
656
+ 10/01/2023 00:17:54 - INFO - __main__ - global_step = 14000, average loss = 0.06602240080737828
657
+ 10/01/2023 00:17:55 - INFO - __main__ - ***** Running evaluation *****
658
+ 10/01/2023 00:17:55 - INFO - __main__ - Num examples = 10000
659
+ 10/01/2023 00:17:55 - INFO - __main__ - Batch size = 32
660
+ 10/01/2023 00:22:16 - INFO - __main__ - ***** Eval results *****
661
+ 10/01/2023 00:22:16 - INFO - __main__ - acc = 0.8185
662
+ 10/01/2023 00:26:20 - INFO - __main__ - global_step = 14050, average loss = 0.07546966458212409
663
+ 10/01/2023 00:30:49 - INFO - __main__ - global_step = 14100, average loss = 0.06855787578620948
664
+ 10/01/2023 00:35:15 - INFO - __main__ - global_step = 14150, average loss = 0.06737258993505747
665
+ 10/01/2023 00:39:39 - INFO - __main__ - global_step = 14200, average loss = 0.05966844407041208
666
+ 10/01/2023 00:39:40 - INFO - __main__ - ***** Running evaluation *****
667
+ 10/01/2023 00:39:40 - INFO - __main__ - Num examples = 10000
668
+ 10/01/2023 00:39:40 - INFO - __main__ - Batch size = 32
669
+ 10/01/2023 00:44:00 - INFO - __main__ - ***** Eval results *****
670
+ 10/01/2023 00:44:00 - INFO - __main__ - acc = 0.8282
671
+ 10/01/2023 00:47:56 - INFO - __main__ - global_step = 14250, average loss = 0.0709371871012263
672
+ 10/01/2023 00:51:54 - INFO - __main__ - global_step = 14300, average loss = 0.07779215545522675
673
+ 10/01/2023 00:56:02 - INFO - __main__ - global_step = 14350, average loss = 0.06590510867084959
674
+ 10/01/2023 01:00:08 - INFO - __main__ - global_step = 14400, average loss = 0.061885312875092496
675
+ 10/01/2023 01:00:09 - INFO - __main__ - ***** Running evaluation *****
676
+ 10/01/2023 01:00:09 - INFO - __main__ - Num examples = 10000
677
+ 10/01/2023 01:00:09 - INFO - __main__ - Batch size = 32
678
+ 10/01/2023 01:04:29 - INFO - __main__ - ***** Eval results *****
679
+ 10/01/2023 01:04:29 - INFO - __main__ - acc = 0.8195
680
+ 10/01/2023 01:08:20 - INFO - __main__ - global_step = 14450, average loss = 0.07757491528376705
681
+ 10/01/2023 01:12:26 - INFO - __main__ - global_step = 14500, average loss = 0.061351443203457166
682
+ 10/01/2023 01:16:44 - INFO - __main__ - global_step = 14550, average loss = 0.06742463728594884
683
+ 10/01/2023 01:20:55 - INFO - __main__ - global_step = 14600, average loss = 0.06395716872473713
684
+ 10/01/2023 01:20:56 - INFO - __main__ - ***** Running evaluation *****
685
+ 10/01/2023 01:20:56 - INFO - __main__ - Num examples = 10000
686
+ 10/01/2023 01:20:56 - INFO - __main__ - Batch size = 32
687
+ 10/01/2023 01:25:16 - INFO - __main__ - ***** Eval results *****
688
+ 10/01/2023 01:25:16 - INFO - __main__ - acc = 0.8271
689
+ 10/01/2023 01:29:11 - INFO - __main__ - global_step = 14650, average loss = 0.0680865884249215
690
+ 10/01/2023 01:33:17 - INFO - __main__ - global_step = 14700, average loss = 0.07319515083199804
691
+ 10/01/2023 01:37:31 - INFO - __main__ - global_step = 14750, average loss = 0.0750861974158397
692
+ 10/01/2023 01:41:39 - INFO - __main__ - global_step = 14800, average loss = 0.07455838610287174
693
+ 10/01/2023 01:41:39 - INFO - __main__ - ***** Running evaluation *****
694
+ 10/01/2023 01:41:39 - INFO - __main__ - Num examples = 10000
695
+ 10/01/2023 01:41:39 - INFO - __main__ - Batch size = 32
696
+ 10/01/2023 01:45:59 - INFO - __main__ - ***** Eval results *****
697
+ 10/01/2023 01:45:59 - INFO - __main__ - acc = 0.8285
698
+ 10/01/2023 01:49:49 - INFO - __main__ - global_step = 14850, average loss = 0.0746920863639025
699
+ 10/01/2023 01:53:48 - INFO - __main__ - global_step = 14900, average loss = 0.06193213762038795
700
+ 10/01/2023 01:58:00 - INFO - __main__ - global_step = 14950, average loss = 0.0684903811987897
701
+ 10/01/2023 02:02:20 - INFO - __main__ - global_step = 15000, average loss = 0.07475626632280181
702
+ 10/01/2023 02:02:21 - INFO - __main__ - ***** Running evaluation *****
703
+ 10/01/2023 02:02:21 - INFO - __main__ - Num examples = 10000
704
+ 10/01/2023 02:02:21 - INFO - __main__ - Batch size = 32
705
+ 10/01/2023 02:06:40 - INFO - __main__ - ***** Eval results *****
706
+ 10/01/2023 02:06:40 - INFO - __main__ - acc = 0.8221
707
+ 10/01/2023 02:10:33 - INFO - __main__ - global_step = 15050, average loss = 0.06398421550955391
708
+ 10/01/2023 02:14:31 - INFO - __main__ - global_step = 15100, average loss = 0.07387388837814797
709
+ 10/01/2023 02:18:36 - INFO - __main__ - global_step = 15150, average loss = 0.07215547483820046
710
+ 10/01/2023 02:22:42 - INFO - __main__ - global_step = 15200, average loss = 0.06692371807614109
711
+ 10/01/2023 02:22:42 - INFO - __main__ - ***** Running evaluation *****
712
+ 10/01/2023 02:22:42 - INFO - __main__ - Num examples = 10000
713
+ 10/01/2023 02:22:42 - INFO - __main__ - Batch size = 32
714
+ 10/01/2023 02:27:06 - INFO - __main__ - ***** Eval results *****
715
+ 10/01/2023 02:27:06 - INFO - __main__ - acc = 0.828
716
+ 10/01/2023 02:31:03 - INFO - __main__ - global_step = 15250, average loss = 0.07475481618889716
717
+ 10/01/2023 02:35:03 - INFO - __main__ - global_step = 15300, average loss = 0.06605282124131918
718
+ 10/01/2023 02:39:06 - INFO - __main__ - global_step = 15350, average loss = 0.0742860847054817
719
+ 10/01/2023 02:43:08 - INFO - __main__ - global_step = 15400, average loss = 0.06508645007126689
720
+ 10/01/2023 02:43:09 - INFO - __main__ - ***** Running evaluation *****
721
+ 10/01/2023 02:43:09 - INFO - __main__ - Num examples = 10000
722
+ 10/01/2023 02:43:09 - INFO - __main__ - Batch size = 32
723
+ 10/01/2023 02:47:27 - INFO - __main__ - ***** Eval results *****
724
+ 10/01/2023 02:47:27 - INFO - __main__ - acc = 0.8244
725
+ 10/01/2023 02:51:15 - INFO - __main__ - global_step = 15450, average loss = 0.0657403554152188
726
+ 10/01/2023 02:55:25 - INFO - __main__ - global_step = 15500, average loss = 0.06363382869447377
727
+ 10/01/2023 02:59:33 - INFO - __main__ - global_step = 15550, average loss = 0.068332606570184
728
+ 10/01/2023 03:03:36 - INFO - __main__ - global_step = 15600, average loss = 0.0638002801532275
729
+ 10/01/2023 03:03:37 - INFO - __main__ - ***** Running evaluation *****
730
+ 10/01/2023 03:03:37 - INFO - __main__ - Num examples = 10000
731
+ 10/01/2023 03:03:37 - INFO - __main__ - Batch size = 32
732
+ 10/01/2023 03:07:54 - INFO - __main__ - ***** Eval results *****
733
+ 10/01/2023 03:07:54 - INFO - __main__ - acc = 0.8245
734
+ 10/01/2023 03:11:47 - INFO - __main__ - global_step = 15650, average loss = 0.07057813088395051
735
+ 10/01/2023 03:15:48 - INFO - __main__ - global_step = 15700, average loss = 0.059586076617561046
736
+ 10/01/2023 03:19:50 - INFO - __main__ - global_step = 15750, average loss = 0.06329842852351249
737
+ 10/01/2023 03:24:07 - INFO - __main__ - global_step = 15800, average loss = 0.0673095579940309
738
+ 10/01/2023 03:24:08 - INFO - __main__ - ***** Running evaluation *****
739
+ 10/01/2023 03:24:08 - INFO - __main__ - Num examples = 10000
740
+ 10/01/2023 03:24:08 - INFO - __main__ - Batch size = 32
741
+ 10/01/2023 03:28:27 - INFO - __main__ - ***** Eval results *****
742
+ 10/01/2023 03:28:27 - INFO - __main__ - acc = 0.8191
743
+ 10/01/2023 03:32:25 - INFO - __main__ - global_step = 15850, average loss = 0.06719043602446619
744
+ 10/01/2023 03:36:22 - INFO - __main__ - global_step = 15900, average loss = 0.06470626855618321
745
+ 10/01/2023 03:40:22 - INFO - __main__ - global_step = 15950, average loss = 0.0673678615699464
746
+ 10/01/2023 03:44:32 - INFO - __main__ - global_step = 16000, average loss = 0.06654785299411742
747
+ 10/01/2023 03:44:32 - INFO - __main__ - ***** Running evaluation *****
748
+ 10/01/2023 03:44:32 - INFO - __main__ - Num examples = 10000
749
+ 10/01/2023 03:44:32 - INFO - __main__ - Batch size = 32
750
+ 10/01/2023 03:48:51 - INFO - __main__ - ***** Eval results *****
751
+ 10/01/2023 03:48:51 - INFO - __main__ - acc = 0.826
752
+ 10/01/2023 03:52:42 - INFO - __main__ - global_step = 16050, average loss = 0.07211193255971012
753
+ 10/01/2023 03:56:30 - INFO - __main__ - global_step = 16100, average loss = 0.07810956820030697
754
+ 10/01/2023 04:00:37 - INFO - __main__ - global_step = 16150, average loss = 0.07871339554849328
755
+ 10/01/2023 04:04:48 - INFO - __main__ - global_step = 16200, average loss = 0.06766451962915199
756
+ 10/01/2023 04:04:48 - INFO - __main__ - ***** Running evaluation *****
757
+ 10/01/2023 04:04:48 - INFO - __main__ - Num examples = 10000
758
+ 10/01/2023 04:04:48 - INFO - __main__ - Batch size = 32
759
+ 10/01/2023 04:09:07 - INFO - __main__ - ***** Eval results *****
760
+ 10/01/2023 04:09:07 - INFO - __main__ - acc = 0.8234
761
+ 10/01/2023 04:13:00 - INFO - __main__ - global_step = 16250, average loss = 0.07233332002186216
762
+ 10/01/2023 04:17:08 - INFO - __main__ - global_step = 16300, average loss = 0.06269402921956498
763
+ 10/01/2023 04:21:18 - INFO - __main__ - global_step = 16350, average loss = 0.066974333815524
764
+ 10/01/2023 04:25:36 - INFO - __main__ - global_step = 16400, average loss = 0.06326851320967762
765
+ 10/01/2023 04:25:36 - INFO - __main__ - ***** Running evaluation *****
766
+ 10/01/2023 04:25:36 - INFO - __main__ - Num examples = 10000
767
+ 10/01/2023 04:25:36 - INFO - __main__ - Batch size = 32
768
+ 10/01/2023 04:29:55 - INFO - __main__ - ***** Eval results *****
769
+ 10/01/2023 04:29:55 - INFO - __main__ - acc = 0.8218
770
+ 10/01/2023 04:33:53 - INFO - __main__ - global_step = 16450, average loss = 0.0583337911261151
771
+ 10/01/2023 04:38:00 - INFO - __main__ - global_step = 16500, average loss = 0.06651346774706327
772
+ 10/01/2023 04:42:10 - INFO - __main__ - global_step = 16550, average loss = 0.07442569829370768
773
+ 10/01/2023 04:46:19 - INFO - __main__ - global_step = 16600, average loss = 0.0704036247156182
774
+ 10/01/2023 04:46:19 - INFO - __main__ - ***** Running evaluation *****
775
+ 10/01/2023 04:46:19 - INFO - __main__ - Num examples = 10000
776
+ 10/01/2023 04:46:19 - INFO - __main__ - Batch size = 32
777
+ 10/01/2023 04:50:38 - INFO - __main__ - ***** Eval results *****
778
+ 10/01/2023 04:50:38 - INFO - __main__ - acc = 0.8268
779
+ 10/01/2023 04:54:40 - INFO - __main__ - global_step = 16650, average loss = 0.07102784802380484
780
+ 10/01/2023 04:58:39 - INFO - __main__ - global_step = 16700, average loss = 0.07482151540141785
781
+ 10/01/2023 05:02:48 - INFO - __main__ - global_step = 16750, average loss = 0.06266404812475229
782
+ 10/01/2023 05:06:49 - INFO - __main__ - global_step = 16800, average loss = 0.06936132206232287
783
+ 10/01/2023 05:06:50 - INFO - __main__ - ***** Running evaluation *****
784
+ 10/01/2023 05:06:50 - INFO - __main__ - Num examples = 10000
785
+ 10/01/2023 05:06:50 - INFO - __main__ - Batch size = 32
786
+ 10/01/2023 05:11:07 - INFO - __main__ - ***** Eval results *****
787
+ 10/01/2023 05:11:07 - INFO - __main__ - acc = 0.8313
788
+ 10/01/2023 05:15:16 - INFO - __main__ - global_step = 16850, average loss = 0.060352628196997105
789
+ 10/01/2023 05:19:33 - INFO - __main__ - global_step = 16900, average loss = 0.0641949670168833
790
+ 10/01/2023 05:23:53 - INFO - __main__ - global_step = 16950, average loss = 0.0711748162342701
791
+ 10/01/2023 05:28:04 - INFO - __main__ - global_step = 17000, average loss = 0.07767359625780955
792
+ 10/01/2023 05:28:05 - INFO - __main__ - ***** Running evaluation *****
793
+ 10/01/2023 05:28:05 - INFO - __main__ - Num examples = 10000
794
+ 10/01/2023 05:28:05 - INFO - __main__ - Batch size = 32
795
+ 10/01/2023 05:32:22 - INFO - __main__ - ***** Eval results *****
796
+ 10/01/2023 05:32:22 - INFO - __main__ - acc = 0.8302
797
+ 10/01/2023 05:36:19 - INFO - __main__ - global_step = 17050, average loss = 0.059951672412971675
798
+ 10/01/2023 05:40:23 - INFO - __main__ - global_step = 17100, average loss = 0.0679468241819086
799
+ 10/01/2023 05:44:37 - INFO - __main__ - global_step = 17150, average loss = 0.06287542213140114
800
+ 10/01/2023 05:48:53 - INFO - __main__ - global_step = 17200, average loss = 0.07064101672236575
801
+ 10/01/2023 05:48:53 - INFO - __main__ - ***** Running evaluation *****
802
+ 10/01/2023 05:48:53 - INFO - __main__ - Num examples = 10000
803
+ 10/01/2023 05:48:53 - INFO - __main__ - Batch size = 32
804
+ 10/01/2023 05:53:11 - INFO - __main__ - ***** Eval results *****
805
+ 10/01/2023 05:53:11 - INFO - __main__ - acc = 0.8288
806
+ 10/01/2023 05:57:08 - INFO - __main__ - global_step = 17250, average loss = 0.06821862254073494
807
+ 10/01/2023 06:01:07 - INFO - __main__ - global_step = 17300, average loss = 0.06737288911346695
808
+ 10/01/2023 06:05:09 - INFO - __main__ - global_step = 17350, average loss = 0.06524526451248676
809
+ 10/01/2023 06:09:17 - INFO - __main__ - global_step = 17400, average loss = 0.06838752188666604
810
+ 10/01/2023 06:09:17 - INFO - __main__ - ***** Running evaluation *****
811
+ 10/01/2023 06:09:17 - INFO - __main__ - Num examples = 10000
812
+ 10/01/2023 06:09:17 - INFO - __main__ - Batch size = 32
813
+ 10/01/2023 06:13:34 - INFO - __main__ - ***** Eval results *****
814
+ 10/01/2023 06:13:34 - INFO - __main__ - acc = 0.8292
815
+ 10/01/2023 06:17:34 - INFO - __main__ - global_step = 17450, average loss = 0.07033179465208378
816
+ 10/01/2023 06:21:42 - INFO - __main__ - global_step = 17500, average loss = 0.07338941472058651
817
+ 10/01/2023 06:25:54 - INFO - __main__ - global_step = 17550, average loss = 0.06760536882744418
818
+ 10/01/2023 06:30:29 - INFO - __main__ - global_step = 17600, average loss = 0.06395369231896893
819
+ 10/01/2023 06:30:30 - INFO - __main__ - ***** Running evaluation *****
820
+ 10/01/2023 06:30:30 - INFO - __main__ - Num examples = 10000
821
+ 10/01/2023 06:30:30 - INFO - __main__ - Batch size = 32
822
+ 10/01/2023 06:34:46 - INFO - __main__ - ***** Eval results *****
823
+ 10/01/2023 06:34:46 - INFO - __main__ - acc = 0.8226
824
+ 10/01/2023 06:38:42 - INFO - __main__ - global_step = 17650, average loss = 0.0788995540245378
825
+ 10/01/2023 06:42:45 - INFO - __main__ - global_step = 17700, average loss = 0.058938835552726235
826
+ 10/01/2023 06:46:55 - INFO - __main__ - global_step = 17750, average loss = 0.062029462043719834
827
+ 10/01/2023 06:51:15 - INFO - __main__ - global_step = 17800, average loss = 0.07220558329383493
828
+ 10/01/2023 06:51:15 - INFO - __main__ - ***** Running evaluation *****
829
+ 10/01/2023 06:51:15 - INFO - __main__ - Num examples = 10000
830
+ 10/01/2023 06:51:15 - INFO - __main__ - Batch size = 32
831
+ 10/01/2023 06:55:33 - INFO - __main__ - ***** Eval results *****
832
+ 10/01/2023 06:55:33 - INFO - __main__ - acc = 0.823
833
+ 10/01/2023 06:59:32 - INFO - __main__ - global_step = 17850, average loss = 0.07046543042039048
834
+ 10/01/2023 07:03:39 - INFO - __main__ - global_step = 17900, average loss = 0.0620857437804807
835
+ 10/01/2023 07:07:50 - INFO - __main__ - global_step = 17950, average loss = 0.05406381562563183
836
+ 10/01/2023 07:12:05 - INFO - __main__ - global_step = 18000, average loss = 0.05979254503792617
837
+ 10/01/2023 07:12:05 - INFO - __main__ - ***** Running evaluation *****
838
+ 10/01/2023 07:12:05 - INFO - __main__ - Num examples = 10000
839
+ 10/01/2023 07:12:05 - INFO - __main__ - Batch size = 32
840
+ 10/01/2023 07:16:22 - INFO - __main__ - ***** Eval results *****
841
+ 10/01/2023 07:16:22 - INFO - __main__ - acc = 0.8237
842
+ 10/01/2023 07:20:13 - INFO - __main__ - global_step = 18050, average loss = 0.06541542315782863
843
+ 10/01/2023 07:24:31 - INFO - __main__ - global_step = 18100, average loss = 0.06534778851972078
844
+ 10/01/2023 07:28:50 - INFO - __main__ - global_step = 18150, average loss = 0.06520377914806887
845
+ 10/01/2023 07:33:09 - INFO - __main__ - global_step = 18200, average loss = 0.05995443502964917
846
+ 10/01/2023 07:33:10 - INFO - __main__ - ***** Running evaluation *****
847
+ 10/01/2023 07:33:10 - INFO - __main__ - Num examples = 10000
848
+ 10/01/2023 07:33:10 - INFO - __main__ - Batch size = 32
849
+ 10/01/2023 07:37:27 - INFO - __main__ - ***** Eval results *****
850
+ 10/01/2023 07:37:27 - INFO - __main__ - acc = 0.825
851
+ 10/01/2023 07:41:29 - INFO - __main__ - global_step = 18250, average loss = 0.0729160438424151
852
+ 10/01/2023 07:45:44 - INFO - __main__ - global_step = 18300, average loss = 0.06983143856698007
853
+ 10/01/2023 07:48:53 - INFO - __main__ - ***** Running evaluation *****
854
+ 10/01/2023 07:48:53 - INFO - __main__ - Num examples = 10000
855
+ 10/01/2023 07:48:53 - INFO - __main__ - Batch size = 32
856
+ 10/01/2023 07:53:22 - INFO - __main__ - ***** Eval results *****
857
+ 10/01/2023 07:53:22 - INFO - __main__ - acc = 0.8249
858
+ 10/01/2023 07:53:22 - INFO - __main__ - global_step = 18336, average loss = 0.09140925639286196
859
+ 10/01/2023 07:53:56 - INFO - __main__ - ***** Running evaluation *****
860
+ 10/01/2023 07:53:56 - INFO - __main__ - Num examples = 10000
861
+ 10/01/2023 07:53:56 - INFO - __main__ - Batch size = 32
862
+ 10/01/2023 07:58:24 - INFO - __main__ - ***** Eval results *****
863
+ 10/01/2023 07:58:24 - INFO - __main__ - acc = 0.8326
864
+ 10/01/2023 07:58:30 - INFO - evaluate_DeBERTa - Namespace(dataset_file='../../../data/mcqa/eval/socialiqa_dev.jsonl', lm='output/Output_ATOMIC-pseudo-wWC/car_2i/deberta-v3-large_car_2i_name_100k_seed_101_5e-6', out_dir='./eval_results/deberta-v3-large_car_2i_name_100k_seed_101_5e-6', device=0, reader='socialiqa', overwrite_output_dir=False, cache_dir=None)
865
+ 10/01/2023 07:58:30 - INFO - evaluate_DeBERTa - Initializing output/Output_ATOMIC-pseudo-wWC/car_2i/deberta-v3-large_car_2i_name_100k_seed_101_5e-6
866
+ 10/01/2023 08:06:13 - INFO - evaluate_DeBERTa - Namespace(dataset_file='../../../data/mcqa/eval/winogrande_dev.jsonl', lm='output/Output_ATOMIC-pseudo-wWC/car_2i/deberta-v3-large_car_2i_name_100k_seed_101_5e-6', out_dir='./eval_results/deberta-v3-large_car_2i_name_100k_seed_101_5e-6', device=0, reader='winogrande', overwrite_output_dir=False, cache_dir=None)
867
+ 10/01/2023 08:06:13 - INFO - evaluate_DeBERTa - Initializing output/Output_ATOMIC-pseudo-wWC/car_2i/deberta-v3-large_car_2i_name_100k_seed_101_5e-6
868
+ 10/01/2023 08:08:40 - INFO - evaluate_DeBERTa - Namespace(dataset_file='../../../data/mcqa/eval/piqa_dev.jsonl', lm='output/Output_ATOMIC-pseudo-wWC/car_2i/deberta-v3-large_car_2i_name_100k_seed_101_5e-6', out_dir='./eval_results/deberta-v3-large_car_2i_name_100k_seed_101_5e-6', device=0, reader='piqa', overwrite_output_dir=False, cache_dir=None)
869
+ 10/01/2023 08:08:40 - INFO - evaluate_DeBERTa - Initializing output/Output_ATOMIC-pseudo-wWC/car_2i/deberta-v3-large_car_2i_name_100k_seed_101_5e-6
870
+ 10/01/2023 08:17:19 - INFO - evaluate_DeBERTa - Namespace(dataset_file='../../../data/mcqa/eval/commonsenseqa_dev.jsonl', lm='output/Output_ATOMIC-pseudo-wWC/car_2i/deberta-v3-large_car_2i_name_100k_seed_101_5e-6', out_dir='./eval_results/deberta-v3-large_car_2i_name_100k_seed_101_5e-6', device=0, reader='commonsenseqa', overwrite_output_dir=False, cache_dir=None)
871
+ 10/01/2023 08:17:19 - INFO - evaluate_DeBERTa - Initializing output/Output_ATOMIC-pseudo-wWC/car_2i/deberta-v3-large_car_2i_name_100k_seed_101_5e-6
872
+ 10/01/2023 08:23:12 - INFO - evaluate_DeBERTa - Namespace(dataset_file='../../../data/mcqa/eval/anli_dev.jsonl', lm='output/Output_ATOMIC-pseudo-wWC/car_2i/deberta-v3-large_car_2i_name_100k_seed_101_5e-6', out_dir='./eval_results/deberta-v3-large_car_2i_name_100k_seed_101_5e-6', device=0, reader='anli', overwrite_output_dir=False, cache_dir=None)
873
+ 10/01/2023 08:23:12 - INFO - evaluate_DeBERTa - Initializing output/Output_ATOMIC-pseudo-wWC/car_2i/deberta-v3-large_car_2i_name_100k_seed_101_5e-6
874
+ 10/01/2023 08:28:58 - INFO - __main__ - ***** Running evaluation *****
875
+ 10/01/2023 08:28:58 - INFO - __main__ - Num examples = 120
876
+ 10/01/2023 08:28:58 - INFO - __main__ - Batch size = 32
877
+ 10/01/2023 08:29:16 - INFO - __main__ - ***** Eval results *****
878
+ 10/01/2023 08:29:16 - INFO - __main__ - acc = 0.475
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d4e6646c04ef1788eae8dab3445de6faa31eccb52a2f6ef22a6957c7e802b46c
3
+ size 1915