tqfang229's picture
Upload folder using huggingface_hub
2e3f432 verified
09/23/2023 12:10:45 - WARNING - __main__ - Process rank: -1, device: cuda, n_gpu: 1, distributed training: False, 16-bits training: False
09/23/2023 12:11:04 - INFO - __main__ - Training/evaluation parameters Namespace(train_file='../../../data/mcqa/atomic/train_atm_n_2i_half_sample_name.jsonl', dev_file='../../../data/mcqa/atomic/dev_random_10k.jsonl', model_type='deberta-mlm', model_name_or_path='microsoft/deberta-v3-large', config_name='', tokenizer_name='', cache_dir='.cache', task_name='atomic', output_dir='output/Output_ATOMIC-pseudo-wWC/deberta-v3-large_2i_atm_half_sample_name_5e-6', second_train_file=None, second_dev_file=None, max_seq_length=128, max_words_to_mask=6, max_sequence_per_time=80, do_train=True, do_eval=True, do_ext_eval=True, evaluate_during_training=True, do_lower_case=False, per_gpu_train_batch_size=2, per_gpu_eval_batch_size=16, gradient_accumulation_steps=16, margin=1.0, learning_rate=5e-06, weight_decay=0.01, adam_epsilon=1e-06, max_grad_norm=1.0, num_train_epochs=1.0, max_steps=-1, warmup_steps=0, warmup_proportion=0.05, logging_steps=50, save_steps=500, logits_file='logits_test.txt', results_file='eval_results.txt', no_cuda=False, overwrite_output_dir=False, seed=42, fp16=False, fp16_opt_level='O1', local_rank=-1, server_ip='', server_port='', eval_output_dir='./eval_results', n_gpu=1, device=device(type='cuda'))
09/23/2023 12:11:13 - INFO - __main__ - ***** Running evaluation *****
09/23/2023 12:11:13 - INFO - __main__ - Num examples = 10000
09/23/2023 12:11:13 - INFO - __main__ - Batch size = 16
09/23/2023 12:15:11 - INFO - __main__ - ***** Eval results *****
09/23/2023 12:15:11 - INFO - __main__ - acc = 0.3392
09/23/2023 12:25:13 - INFO - __main__ - warm up steps = 835
09/23/2023 12:25:13 - INFO - __main__ - ***** Running training *****
09/23/2023 12:25:13 - INFO - __main__ - Num examples = 534833
09/23/2023 12:25:13 - INFO - __main__ - Num Epochs = 1
09/23/2023 12:25:13 - INFO - __main__ - Instantaneous batch size per GPU = 2
09/23/2023 12:25:13 - INFO - __main__ - Total train batch size (w. parallel, distributed & accumulation) = 32
09/23/2023 12:25:13 - INFO - __main__ - Gradient Accumulation steps = 16
09/23/2023 12:25:13 - INFO - __main__ - Total optimization steps = 16713
09/23/2023 12:28:54 - INFO - __main__ - global_step = 50, average loss = 0.6903331369534135
09/23/2023 12:32:33 - INFO - __main__ - global_step = 100, average loss = 0.6819266405794769
09/23/2023 12:36:13 - INFO - __main__ - global_step = 150, average loss = 0.6690767159638926
09/23/2023 12:39:56 - INFO - __main__ - global_step = 200, average loss = 0.6476348407182377
09/23/2023 12:43:39 - INFO - __main__ - global_step = 250, average loss = 0.6220815655076877
09/23/2023 12:47:19 - INFO - __main__ - global_step = 300, average loss = 0.5299683179453859
09/23/2023 12:50:56 - INFO - __main__ - global_step = 350, average loss = 0.39345016410181416
09/23/2023 12:54:38 - INFO - __main__ - global_step = 400, average loss = 0.31127411118301096
09/23/2023 12:58:19 - INFO - __main__ - global_step = 450, average loss = 0.25150225180907
09/23/2023 13:02:00 - INFO - __main__ - global_step = 500, average loss = 0.22586858159028453
09/23/2023 13:02:01 - INFO - __main__ - ***** Running evaluation *****
09/23/2023 13:02:01 - INFO - __main__ - Num examples = 10000
09/23/2023 13:02:01 - INFO - __main__ - Batch size = 16
09/23/2023 13:05:56 - INFO - __main__ - ***** Eval results *****
09/23/2023 13:05:56 - INFO - __main__ - acc = 0.6996
09/23/2023 13:06:23 - INFO - __main__ - Saving model checkpoint to output/Output_ATOMIC-pseudo-wWC/deberta-v3-large_2i_atm_half_sample_name_5e-6
09/23/2023 13:10:02 - INFO - __main__ - global_step = 550, average loss = 0.22251796642665794
09/23/2023 13:13:46 - INFO - __main__ - global_step = 600, average loss = 0.19366045010890956
09/23/2023 13:17:29 - INFO - __main__ - global_step = 650, average loss = 0.18587105088678071
09/23/2023 13:21:15 - INFO - __main__ - global_step = 700, average loss = 0.1760789550206391
09/23/2023 13:24:59 - INFO - __main__ - global_step = 750, average loss = 0.18312411408871412
09/23/2023 13:28:42 - INFO - __main__ - global_step = 800, average loss = 0.15576540186157217
09/23/2023 13:32:25 - INFO - __main__ - global_step = 850, average loss = 0.16302873345994157
09/23/2023 13:36:07 - INFO - __main__ - global_step = 900, average loss = 0.15725697406036487
09/23/2023 13:39:46 - INFO - __main__ - global_step = 950, average loss = 0.15640976145299645
09/23/2023 13:43:33 - INFO - __main__ - global_step = 1000, average loss = 0.15606625928507128
09/23/2023 13:43:34 - INFO - __main__ - ***** Running evaluation *****
09/23/2023 13:43:34 - INFO - __main__ - Num examples = 10000
09/23/2023 13:43:34 - INFO - __main__ - Batch size = 16
09/23/2023 13:47:30 - INFO - __main__ - ***** Eval results *****
09/23/2023 13:47:30 - INFO - __main__ - acc = 0.7961
09/23/2023 13:47:58 - INFO - __main__ - Saving model checkpoint to output/Output_ATOMIC-pseudo-wWC/deberta-v3-large_2i_atm_half_sample_name_5e-6
09/23/2023 13:51:41 - INFO - __main__ - global_step = 1050, average loss = 0.14431810150181262
09/23/2023 13:55:20 - INFO - __main__ - global_step = 1100, average loss = 0.15233074207513708
09/23/2023 13:59:01 - INFO - __main__ - global_step = 1150, average loss = 0.1404175848151772
09/23/2023 14:02:44 - INFO - __main__ - global_step = 1200, average loss = 0.12134294869215864
09/23/2023 14:06:20 - INFO - __main__ - global_step = 1250, average loss = 0.1363200130731275
09/23/2023 14:09:59 - INFO - __main__ - global_step = 1300, average loss = 0.13769450530940958
09/23/2023 14:13:43 - INFO - __main__ - global_step = 1350, average loss = 0.12156560226379952
09/23/2023 14:17:18 - INFO - __main__ - global_step = 1400, average loss = 0.12623315585107775
09/23/2023 14:20:59 - INFO - __main__ - global_step = 1450, average loss = 0.14377202547417256
09/23/2023 14:24:33 - INFO - __main__ - global_step = 1500, average loss = 0.1286695548933858
09/23/2023 14:24:34 - INFO - __main__ - ***** Running evaluation *****
09/23/2023 14:24:34 - INFO - __main__ - Num examples = 10000
09/23/2023 14:24:34 - INFO - __main__ - Batch size = 16
09/23/2023 14:28:29 - INFO - __main__ - ***** Eval results *****
09/23/2023 14:28:29 - INFO - __main__ - acc = 0.8048
09/23/2023 14:28:56 - INFO - __main__ - Saving model checkpoint to output/Output_ATOMIC-pseudo-wWC/deberta-v3-large_2i_atm_half_sample_name_5e-6
09/23/2023 14:32:42 - INFO - __main__ - global_step = 1550, average loss = 0.1198868363915244
09/23/2023 14:36:24 - INFO - __main__ - global_step = 1600, average loss = 0.12324378551486007
09/23/2023 14:40:00 - INFO - __main__ - global_step = 1650, average loss = 0.11938468464672042
09/23/2023 14:43:41 - INFO - __main__ - global_step = 1700, average loss = 0.14236379045556533
09/23/2023 14:47:22 - INFO - __main__ - global_step = 1750, average loss = 0.13320694023670512
09/23/2023 14:51:02 - INFO - __main__ - global_step = 1800, average loss = 0.13622453257718006
09/23/2023 14:54:42 - INFO - __main__ - global_step = 1850, average loss = 0.13987649206645072
09/23/2023 14:58:22 - INFO - __main__ - global_step = 1900, average loss = 0.12299754774277971
09/23/2023 15:02:05 - INFO - __main__ - global_step = 1950, average loss = 0.11868109124743569
09/23/2023 15:05:47 - INFO - __main__ - global_step = 2000, average loss = 0.1415042275990345
09/23/2023 15:05:47 - INFO - __main__ - ***** Running evaluation *****
09/23/2023 15:05:47 - INFO - __main__ - Num examples = 10000
09/23/2023 15:05:47 - INFO - __main__ - Batch size = 16
09/23/2023 15:09:43 - INFO - __main__ - ***** Eval results *****
09/23/2023 15:09:43 - INFO - __main__ - acc = 0.8063
09/23/2023 15:10:10 - INFO - __main__ - Saving model checkpoint to output/Output_ATOMIC-pseudo-wWC/deberta-v3-large_2i_atm_half_sample_name_5e-6
09/23/2023 15:13:51 - INFO - __main__ - global_step = 2050, average loss = 0.11399275673671581
09/23/2023 15:17:31 - INFO - __main__ - global_step = 2100, average loss = 0.1065546132405143
09/23/2023 15:21:11 - INFO - __main__ - global_step = 2150, average loss = 0.12809142941467144
09/23/2023 15:24:51 - INFO - __main__ - global_step = 2200, average loss = 0.12454848410692648
09/23/2023 15:28:34 - INFO - __main__ - global_step = 2250, average loss = 0.10986286829065647
09/23/2023 15:32:14 - INFO - __main__ - global_step = 2300, average loss = 0.11237965747121052
09/23/2023 15:35:56 - INFO - __main__ - global_step = 2350, average loss = 0.10897610924319451
09/23/2023 15:39:41 - INFO - __main__ - global_step = 2400, average loss = 0.12056981857070241
09/23/2023 15:43:24 - INFO - __main__ - global_step = 2450, average loss = 0.13911059297635803
09/23/2023 15:47:10 - INFO - __main__ - global_step = 2500, average loss = 0.11335444856034883
09/23/2023 15:47:10 - INFO - __main__ - ***** Running evaluation *****
09/23/2023 15:47:10 - INFO - __main__ - Num examples = 10000
09/23/2023 15:47:10 - INFO - __main__ - Batch size = 16
09/23/2023 15:51:06 - INFO - __main__ - ***** Eval results *****
09/23/2023 15:51:06 - INFO - __main__ - acc = 0.8234
09/23/2023 15:51:32 - INFO - __main__ - Saving model checkpoint to output/Output_ATOMIC-pseudo-wWC/deberta-v3-large_2i_atm_half_sample_name_5e-6
09/23/2023 15:55:10 - INFO - __main__ - global_step = 2550, average loss = 0.12103958850973867
09/23/2023 15:58:57 - INFO - __main__ - global_step = 2600, average loss = 0.11913071399074397
09/23/2023 16:02:38 - INFO - __main__ - global_step = 2650, average loss = 0.11255583499452769
09/23/2023 16:06:28 - INFO - __main__ - global_step = 2700, average loss = 0.1006322616293619
09/23/2023 16:10:12 - INFO - __main__ - global_step = 2750, average loss = 0.0932968783121487
09/23/2023 16:13:51 - INFO - __main__ - global_step = 2800, average loss = 0.11056979637924087
09/23/2023 16:17:38 - INFO - __main__ - global_step = 2850, average loss = 0.12318793082176853
09/23/2023 16:21:21 - INFO - __main__ - global_step = 2900, average loss = 0.10864610994302439
09/23/2023 16:25:03 - INFO - __main__ - global_step = 2950, average loss = 0.11261582636667299
09/23/2023 16:28:40 - INFO - __main__ - global_step = 3000, average loss = 0.12150005620278534
09/23/2023 16:28:40 - INFO - __main__ - ***** Running evaluation *****
09/23/2023 16:28:40 - INFO - __main__ - Num examples = 10000
09/23/2023 16:28:40 - INFO - __main__ - Batch size = 16
09/23/2023 16:32:35 - INFO - __main__ - ***** Eval results *****
09/23/2023 16:32:35 - INFO - __main__ - acc = 0.8261
09/23/2023 16:33:02 - INFO - __main__ - Saving model checkpoint to output/Output_ATOMIC-pseudo-wWC/deberta-v3-large_2i_atm_half_sample_name_5e-6
09/23/2023 16:36:46 - INFO - __main__ - global_step = 3050, average loss = 0.10565035182957218
09/23/2023 16:40:30 - INFO - __main__ - global_step = 3100, average loss = 0.10429829731896462
09/23/2023 16:44:14 - INFO - __main__ - global_step = 3150, average loss = 0.10812272985053824
09/23/2023 16:47:54 - INFO - __main__ - global_step = 3200, average loss = 0.12238092143270478
09/23/2023 16:51:33 - INFO - __main__ - global_step = 3250, average loss = 0.10868940783606376
09/23/2023 16:55:14 - INFO - __main__ - global_step = 3300, average loss = 0.1209917226509424
09/23/2023 16:58:59 - INFO - __main__ - global_step = 3350, average loss = 0.1191260662042896
09/23/2023 17:02:41 - INFO - __main__ - global_step = 3400, average loss = 0.1174743126919202
09/23/2023 17:06:26 - INFO - __main__ - global_step = 3450, average loss = 0.100895225374843
09/23/2023 17:10:02 - INFO - __main__ - global_step = 3500, average loss = 0.0931866138278565
09/23/2023 17:10:03 - INFO - __main__ - ***** Running evaluation *****
09/23/2023 17:10:03 - INFO - __main__ - Num examples = 10000
09/23/2023 17:10:03 - INFO - __main__ - Batch size = 16
09/23/2023 17:13:58 - INFO - __main__ - ***** Eval results *****
09/23/2023 17:13:58 - INFO - __main__ - acc = 0.8229
09/23/2023 17:17:45 - INFO - __main__ - global_step = 3550, average loss = 0.10633477224648231
09/23/2023 17:21:30 - INFO - __main__ - global_step = 3600, average loss = 0.1021722938354651
09/23/2023 17:25:11 - INFO - __main__ - global_step = 3650, average loss = 0.10295378862727375
09/23/2023 17:28:50 - INFO - __main__ - global_step = 3700, average loss = 0.1024187771679135
09/23/2023 17:32:34 - INFO - __main__ - global_step = 3750, average loss = 0.09922411829451448
09/23/2023 17:36:14 - INFO - __main__ - global_step = 3800, average loss = 0.11105157318372222
09/23/2023 17:39:57 - INFO - __main__ - global_step = 3850, average loss = 0.12378941989987652
09/23/2023 17:43:42 - INFO - __main__ - global_step = 3900, average loss = 0.1034327056143593
09/23/2023 17:47:25 - INFO - __main__ - global_step = 3950, average loss = 0.09697925167827634
09/23/2023 17:51:09 - INFO - __main__ - global_step = 4000, average loss = 0.11230336717126192
09/23/2023 17:51:09 - INFO - __main__ - ***** Running evaluation *****
09/23/2023 17:51:09 - INFO - __main__ - Num examples = 10000
09/23/2023 17:51:09 - INFO - __main__ - Batch size = 16
09/23/2023 17:55:05 - INFO - __main__ - ***** Eval results *****
09/23/2023 17:55:05 - INFO - __main__ - acc = 0.8371
09/23/2023 17:55:32 - INFO - __main__ - Saving model checkpoint to output/Output_ATOMIC-pseudo-wWC/deberta-v3-large_2i_atm_half_sample_name_5e-6
09/23/2023 17:59:12 - INFO - __main__ - global_step = 4050, average loss = 0.10925351051962934
09/23/2023 18:03:00 - INFO - __main__ - global_step = 4100, average loss = 0.09795216493275802
09/23/2023 18:06:43 - INFO - __main__ - global_step = 4150, average loss = 0.09962472554965643
09/23/2023 18:10:25 - INFO - __main__ - global_step = 4200, average loss = 0.10342389734141762
09/23/2023 18:14:05 - INFO - __main__ - global_step = 4250, average loss = 0.09674815248567029
09/23/2023 18:17:48 - INFO - __main__ - global_step = 4300, average loss = 0.10319628210134396
09/23/2023 18:21:33 - INFO - __main__ - global_step = 4350, average loss = 0.09340641272166977
09/23/2023 18:25:14 - INFO - __main__ - global_step = 4400, average loss = 0.10845618240913608
09/23/2023 18:28:59 - INFO - __main__ - global_step = 4450, average loss = 0.11604906246473547
09/23/2023 18:32:43 - INFO - __main__ - global_step = 4500, average loss = 0.09590314964269055
09/23/2023 18:32:43 - INFO - __main__ - ***** Running evaluation *****
09/23/2023 18:32:43 - INFO - __main__ - Num examples = 10000
09/23/2023 18:32:43 - INFO - __main__ - Batch size = 16
09/23/2023 18:36:38 - INFO - __main__ - ***** Eval results *****
09/23/2023 18:36:38 - INFO - __main__ - acc = 0.8305
09/23/2023 18:40:22 - INFO - __main__ - global_step = 4550, average loss = 0.09955280199857952
09/23/2023 18:44:07 - INFO - __main__ - global_step = 4600, average loss = 0.09018894311768236
09/23/2023 18:47:49 - INFO - __main__ - global_step = 4650, average loss = 0.11624654464081687
09/23/2023 18:51:30 - INFO - __main__ - global_step = 4700, average loss = 0.11213955332923434
09/23/2023 18:55:07 - INFO - __main__ - global_step = 4750, average loss = 0.11335175217776851
09/23/2023 18:58:47 - INFO - __main__ - global_step = 4800, average loss = 0.10374061681199237
09/23/2023 19:02:34 - INFO - __main__ - global_step = 4850, average loss = 0.09650620453016018
09/23/2023 19:06:16 - INFO - __main__ - global_step = 4900, average loss = 0.1034209698169434
09/23/2023 19:09:53 - INFO - __main__ - global_step = 4950, average loss = 0.10046588191311458
09/23/2023 19:13:34 - INFO - __main__ - global_step = 5000, average loss = 0.10752027794980677
09/23/2023 19:13:34 - INFO - __main__ - ***** Running evaluation *****
09/23/2023 19:13:34 - INFO - __main__ - Num examples = 10000
09/23/2023 19:13:34 - INFO - __main__ - Batch size = 16
09/23/2023 19:17:29 - INFO - __main__ - ***** Eval results *****
09/23/2023 19:17:29 - INFO - __main__ - acc = 0.8355
09/23/2023 19:21:19 - INFO - __main__ - global_step = 5050, average loss = 0.10195030277842307
09/23/2023 19:24:58 - INFO - __main__ - global_step = 5100, average loss = 0.10987481483532065
09/23/2023 19:28:41 - INFO - __main__ - global_step = 5150, average loss = 0.10906005093554995
09/23/2023 19:32:23 - INFO - __main__ - global_step = 5200, average loss = 0.09835696181547973
09/23/2023 19:36:06 - INFO - __main__ - global_step = 5250, average loss = 0.10181126694624254
09/23/2023 19:39:52 - INFO - __main__ - global_step = 5300, average loss = 0.08663028705283068
09/23/2023 19:43:30 - INFO - __main__ - global_step = 5350, average loss = 0.10507196654667496
09/23/2023 19:47:18 - INFO - __main__ - global_step = 5400, average loss = 0.108608085659871
09/23/2023 19:51:03 - INFO - __main__ - global_step = 5450, average loss = 0.099619501844536
09/23/2023 19:54:49 - INFO - __main__ - global_step = 5500, average loss = 0.10225338533447939
09/23/2023 19:54:49 - INFO - __main__ - ***** Running evaluation *****
09/23/2023 19:54:49 - INFO - __main__ - Num examples = 10000
09/23/2023 19:54:49 - INFO - __main__ - Batch size = 16
09/23/2023 19:58:45 - INFO - __main__ - ***** Eval results *****
09/23/2023 19:58:45 - INFO - __main__ - acc = 0.8279
09/23/2023 20:02:26 - INFO - __main__ - global_step = 5550, average loss = 0.10436682683890468
09/23/2023 20:06:11 - INFO - __main__ - global_step = 5600, average loss = 0.10477761221260153
09/23/2023 20:09:52 - INFO - __main__ - global_step = 5650, average loss = 0.09326410317778937
09/23/2023 20:13:31 - INFO - __main__ - global_step = 5700, average loss = 0.11269167278223904
09/23/2023 20:17:16 - INFO - __main__ - global_step = 5750, average loss = 0.10188864256499074
09/23/2023 20:21:00 - INFO - __main__ - global_step = 5800, average loss = 0.10433580860199981
09/23/2023 20:24:43 - INFO - __main__ - global_step = 5850, average loss = 0.08972063858884212
09/23/2023 20:28:22 - INFO - __main__ - global_step = 5900, average loss = 0.1065664726671821
09/23/2023 20:32:07 - INFO - __main__ - global_step = 5950, average loss = 0.10174332244623656
09/23/2023 20:35:49 - INFO - __main__ - global_step = 6000, average loss = 0.08872646622621687
09/23/2023 20:35:49 - INFO - __main__ - ***** Running evaluation *****
09/23/2023 20:35:49 - INFO - __main__ - Num examples = 10000
09/23/2023 20:35:49 - INFO - __main__ - Batch size = 16
09/23/2023 20:39:45 - INFO - __main__ - ***** Eval results *****
09/23/2023 20:39:45 - INFO - __main__ - acc = 0.8363
09/23/2023 20:43:29 - INFO - __main__ - global_step = 6050, average loss = 0.10705330887685705
09/23/2023 20:47:16 - INFO - __main__ - global_step = 6100, average loss = 0.09171272950654384
09/23/2023 20:50:59 - INFO - __main__ - global_step = 6150, average loss = 0.0861645900901567
09/23/2023 20:54:46 - INFO - __main__ - global_step = 6200, average loss = 0.08994678908144124
09/23/2023 20:58:32 - INFO - __main__ - global_step = 6250, average loss = 0.08786970607354305
09/23/2023 21:02:13 - INFO - __main__ - global_step = 6300, average loss = 0.09656520821336016
09/23/2023 21:05:56 - INFO - __main__ - global_step = 6350, average loss = 0.09620310332989902
09/23/2023 21:09:42 - INFO - __main__ - global_step = 6400, average loss = 0.09152124080545036
09/23/2023 21:13:22 - INFO - __main__ - global_step = 6450, average loss = 0.09472263304131047
09/23/2023 21:17:06 - INFO - __main__ - global_step = 6500, average loss = 0.10554198697194807
09/23/2023 21:17:06 - INFO - __main__ - ***** Running evaluation *****
09/23/2023 21:17:06 - INFO - __main__ - Num examples = 10000
09/23/2023 21:17:06 - INFO - __main__ - Batch size = 16
09/23/2023 21:21:01 - INFO - __main__ - ***** Eval results *****
09/23/2023 21:21:01 - INFO - __main__ - acc = 0.841
09/23/2023 21:21:28 - INFO - __main__ - Saving model checkpoint to output/Output_ATOMIC-pseudo-wWC/deberta-v3-large_2i_atm_half_sample_name_5e-6
09/23/2023 21:25:14 - INFO - __main__ - global_step = 6550, average loss = 0.09830655160796596
09/23/2023 21:28:55 - INFO - __main__ - global_step = 6600, average loss = 0.09539545015402837
09/23/2023 21:32:40 - INFO - __main__ - global_step = 6650, average loss = 0.09118585625503328
09/23/2023 21:36:18 - INFO - __main__ - global_step = 6700, average loss = 0.09700520555491493
09/23/2023 21:40:03 - INFO - __main__ - global_step = 6750, average loss = 0.105271778342576
09/23/2023 21:43:45 - INFO - __main__ - global_step = 6800, average loss = 0.10975144471223758
09/23/2023 21:47:28 - INFO - __main__ - global_step = 6850, average loss = 0.09920243133579788
09/23/2023 21:51:11 - INFO - __main__ - global_step = 6900, average loss = 0.09791661702009151
09/23/2023 21:54:51 - INFO - __main__ - global_step = 6950, average loss = 0.08630025177910283
09/23/2023 21:58:29 - INFO - __main__ - global_step = 7000, average loss = 0.09660528897402401
09/23/2023 21:58:29 - INFO - __main__ - ***** Running evaluation *****
09/23/2023 21:58:29 - INFO - __main__ - Num examples = 10000
09/23/2023 21:58:29 - INFO - __main__ - Batch size = 16
09/23/2023 22:02:25 - INFO - __main__ - ***** Eval results *****
09/23/2023 22:02:25 - INFO - __main__ - acc = 0.843
09/23/2023 22:02:51 - INFO - __main__ - Saving model checkpoint to output/Output_ATOMIC-pseudo-wWC/deberta-v3-large_2i_atm_half_sample_name_5e-6
09/23/2023 22:06:33 - INFO - __main__ - global_step = 7050, average loss = 0.10305566756385814
09/23/2023 22:10:07 - INFO - __main__ - global_step = 7100, average loss = 0.10687436608219286
09/23/2023 22:13:47 - INFO - __main__ - global_step = 7150, average loss = 0.0946133067667688
09/23/2023 22:17:27 - INFO - __main__ - global_step = 7200, average loss = 0.09795189084834419
09/23/2023 22:21:17 - INFO - __main__ - global_step = 7250, average loss = 0.09060888570308634
09/23/2023 22:24:59 - INFO - __main__ - global_step = 7300, average loss = 0.0877145413684775
09/23/2023 22:28:35 - INFO - __main__ - global_step = 7350, average loss = 0.10495714643941029
09/23/2023 22:32:21 - INFO - __main__ - global_step = 7400, average loss = 0.07401456630654138
09/23/2023 22:36:03 - INFO - __main__ - global_step = 7450, average loss = 0.09523518772701209
09/23/2023 22:39:41 - INFO - __main__ - global_step = 7500, average loss = 0.10137952610446518
09/23/2023 22:39:41 - INFO - __main__ - ***** Running evaluation *****
09/23/2023 22:39:41 - INFO - __main__ - Num examples = 10000
09/23/2023 22:39:41 - INFO - __main__ - Batch size = 16
09/23/2023 22:43:37 - INFO - __main__ - ***** Eval results *****
09/23/2023 22:43:37 - INFO - __main__ - acc = 0.846
09/23/2023 22:44:03 - INFO - __main__ - Saving model checkpoint to output/Output_ATOMIC-pseudo-wWC/deberta-v3-large_2i_atm_half_sample_name_5e-6
09/23/2023 22:47:46 - INFO - __main__ - global_step = 7550, average loss = 0.09563293447645264
09/23/2023 22:51:31 - INFO - __main__ - global_step = 7600, average loss = 0.09618103489105125
09/23/2023 22:55:13 - INFO - __main__ - global_step = 7650, average loss = 0.08849806944810552
09/23/2023 22:58:54 - INFO - __main__ - global_step = 7700, average loss = 0.10007433392238455
09/23/2023 23:02:36 - INFO - __main__ - global_step = 7750, average loss = 0.09035434001329122
09/23/2023 23:06:24 - INFO - __main__ - global_step = 7800, average loss = 0.09338357288788757
09/23/2023 23:10:04 - INFO - __main__ - global_step = 7850, average loss = 0.09912064949181514
09/23/2023 23:13:47 - INFO - __main__ - global_step = 7900, average loss = 0.08827902228244057
09/23/2023 23:17:27 - INFO - __main__ - global_step = 7950, average loss = 0.11218067690118914
09/23/2023 23:21:09 - INFO - __main__ - global_step = 8000, average loss = 0.08588292430682486
09/23/2023 23:21:09 - INFO - __main__ - ***** Running evaluation *****
09/23/2023 23:21:09 - INFO - __main__ - Num examples = 10000
09/23/2023 23:21:09 - INFO - __main__ - Batch size = 16
09/23/2023 23:25:05 - INFO - __main__ - ***** Eval results *****
09/23/2023 23:25:05 - INFO - __main__ - acc = 0.8472
09/23/2023 23:25:31 - INFO - __main__ - Saving model checkpoint to output/Output_ATOMIC-pseudo-wWC/deberta-v3-large_2i_atm_half_sample_name_5e-6
09/23/2023 23:29:08 - INFO - __main__ - global_step = 8050, average loss = 0.09245043838061974
09/23/2023 23:32:54 - INFO - __main__ - global_step = 8100, average loss = 0.08283289226481429
09/23/2023 23:36:34 - INFO - __main__ - global_step = 8150, average loss = 0.08407623038449856
09/23/2023 23:40:17 - INFO - __main__ - global_step = 8200, average loss = 0.09736820162237564
09/23/2023 23:44:06 - INFO - __main__ - global_step = 8250, average loss = 0.08463705457368632
09/23/2023 23:47:50 - INFO - __main__ - global_step = 8300, average loss = 0.10010304888644896
09/23/2023 23:51:35 - INFO - __main__ - global_step = 8350, average loss = 0.09222401980725409
09/23/2023 23:55:17 - INFO - __main__ - global_step = 8400, average loss = 0.08634746881416504
09/23/2023 23:58:59 - INFO - __main__ - global_step = 8450, average loss = 0.08723288500368653
09/24/2023 00:02:37 - INFO - __main__ - global_step = 8500, average loss = 0.10130320921433394
09/24/2023 00:02:37 - INFO - __main__ - ***** Running evaluation *****
09/24/2023 00:02:37 - INFO - __main__ - Num examples = 10000
09/24/2023 00:02:37 - INFO - __main__ - Batch size = 16
09/24/2023 00:06:32 - INFO - __main__ - ***** Eval results *****
09/24/2023 00:06:32 - INFO - __main__ - acc = 0.8452
09/24/2023 00:10:13 - INFO - __main__ - global_step = 8550, average loss = 0.0889340414837352
09/24/2023 00:13:53 - INFO - __main__ - global_step = 8600, average loss = 0.0960574367789377
09/24/2023 00:17:37 - INFO - __main__ - global_step = 8650, average loss = 0.07860265792332939
09/24/2023 00:21:20 - INFO - __main__ - global_step = 8700, average loss = 0.09233207383847912
09/24/2023 00:25:05 - INFO - __main__ - global_step = 8750, average loss = 0.09803196908305836
09/24/2023 00:28:44 - INFO - __main__ - global_step = 8800, average loss = 0.08913468146740343
09/24/2023 00:32:26 - INFO - __main__ - global_step = 8850, average loss = 0.0880054514182666
09/24/2023 00:36:11 - INFO - __main__ - global_step = 8900, average loss = 0.0839999437017832
09/24/2023 00:39:52 - INFO - __main__ - global_step = 8950, average loss = 0.10094311676693905
09/24/2023 00:43:32 - INFO - __main__ - global_step = 9000, average loss = 0.10011614485312748
09/24/2023 00:43:32 - INFO - __main__ - ***** Running evaluation *****
09/24/2023 00:43:32 - INFO - __main__ - Num examples = 10000
09/24/2023 00:43:32 - INFO - __main__ - Batch size = 16
09/24/2023 00:47:27 - INFO - __main__ - ***** Eval results *****
09/24/2023 00:47:27 - INFO - __main__ - acc = 0.8463
09/24/2023 00:51:10 - INFO - __main__ - global_step = 9050, average loss = 0.09407024829903093
09/24/2023 00:54:48 - INFO - __main__ - global_step = 9100, average loss = 0.09510339217069032
09/24/2023 00:58:27 - INFO - __main__ - global_step = 9150, average loss = 0.09413513723055075
09/24/2023 01:02:10 - INFO - __main__ - global_step = 9200, average loss = 0.08488880819528276
09/24/2023 01:05:47 - INFO - __main__ - global_step = 9250, average loss = 0.09847264970565447
09/24/2023 01:09:28 - INFO - __main__ - global_step = 9300, average loss = 0.08640140883806452
09/24/2023 01:13:08 - INFO - __main__ - global_step = 9350, average loss = 0.07884123000112594
09/24/2023 01:16:54 - INFO - __main__ - global_step = 9400, average loss = 0.0831154512307694
09/24/2023 01:20:32 - INFO - __main__ - global_step = 9450, average loss = 0.09913980022422038
09/24/2023 01:24:11 - INFO - __main__ - global_step = 9500, average loss = 0.09805536182444484
09/24/2023 01:24:11 - INFO - __main__ - ***** Running evaluation *****
09/24/2023 01:24:11 - INFO - __main__ - Num examples = 10000
09/24/2023 01:24:11 - INFO - __main__ - Batch size = 16
09/24/2023 01:28:07 - INFO - __main__ - ***** Eval results *****
09/24/2023 01:28:07 - INFO - __main__ - acc = 0.8463
09/24/2023 01:31:55 - INFO - __main__ - global_step = 9550, average loss = 0.0912455873134968
09/24/2023 01:35:38 - INFO - __main__ - global_step = 9600, average loss = 0.10278063782119716
09/24/2023 01:39:12 - INFO - __main__ - global_step = 9650, average loss = 0.08788584528032516
09/24/2023 01:42:53 - INFO - __main__ - global_step = 9700, average loss = 0.08058010207216285
09/24/2023 01:46:34 - INFO - __main__ - global_step = 9750, average loss = 0.08765123128723644
09/24/2023 01:50:14 - INFO - __main__ - global_step = 9800, average loss = 0.09005017607181799
09/24/2023 01:54:03 - INFO - __main__ - global_step = 9850, average loss = 0.07892634223760979
09/24/2023 01:57:44 - INFO - __main__ - global_step = 9900, average loss = 0.07999062808303278
09/24/2023 02:01:26 - INFO - __main__ - global_step = 9950, average loss = 0.09494447313452838
09/24/2023 02:05:06 - INFO - __main__ - global_step = 10000, average loss = 0.0841888710015337
09/24/2023 02:05:06 - INFO - __main__ - ***** Running evaluation *****
09/24/2023 02:05:06 - INFO - __main__ - Num examples = 10000
09/24/2023 02:05:06 - INFO - __main__ - Batch size = 16
09/24/2023 02:09:01 - INFO - __main__ - ***** Eval results *****
09/24/2023 02:09:01 - INFO - __main__ - acc = 0.8471
09/24/2023 02:12:40 - INFO - __main__ - global_step = 10050, average loss = 0.08929907138342968
09/24/2023 02:16:20 - INFO - __main__ - global_step = 10100, average loss = 0.10172551687661326
09/24/2023 02:20:00 - INFO - __main__ - global_step = 10150, average loss = 0.09577305402533966
09/24/2023 02:23:46 - INFO - __main__ - global_step = 10200, average loss = 0.09480085656211486
09/24/2023 02:27:27 - INFO - __main__ - global_step = 10250, average loss = 0.07956519629078684
09/24/2023 02:31:05 - INFO - __main__ - global_step = 10300, average loss = 0.08291967767250753
09/24/2023 02:34:47 - INFO - __main__ - global_step = 10350, average loss = 0.09592102762369904
09/24/2023 02:38:29 - INFO - __main__ - global_step = 10400, average loss = 0.08570889301292482
09/24/2023 02:42:13 - INFO - __main__ - global_step = 10450, average loss = 0.07362440132081247
09/24/2023 02:45:58 - INFO - __main__ - global_step = 10500, average loss = 0.08574875552483718
09/24/2023 02:45:58 - INFO - __main__ - ***** Running evaluation *****
09/24/2023 02:45:58 - INFO - __main__ - Num examples = 10000
09/24/2023 02:45:58 - INFO - __main__ - Batch size = 16
09/24/2023 02:49:53 - INFO - __main__ - ***** Eval results *****
09/24/2023 02:49:53 - INFO - __main__ - acc = 0.8524
09/24/2023 02:50:20 - INFO - __main__ - Saving model checkpoint to output/Output_ATOMIC-pseudo-wWC/deberta-v3-large_2i_atm_half_sample_name_5e-6
09/24/2023 02:54:03 - INFO - __main__ - global_step = 10550, average loss = 0.08846153970320302
09/24/2023 02:57:43 - INFO - __main__ - global_step = 10600, average loss = 0.08381684645668429
09/24/2023 03:01:26 - INFO - __main__ - global_step = 10650, average loss = 0.09288432469184045
09/24/2023 03:05:08 - INFO - __main__ - global_step = 10700, average loss = 0.08199916316298186
09/24/2023 03:08:56 - INFO - __main__ - global_step = 10750, average loss = 0.09068042659768252
09/24/2023 03:12:37 - INFO - __main__ - global_step = 10800, average loss = 0.08719110449641448
09/24/2023 03:16:20 - INFO - __main__ - global_step = 10850, average loss = 0.09036207084544003
09/24/2023 03:20:04 - INFO - __main__ - global_step = 10900, average loss = 0.095746248819637
09/24/2023 03:23:45 - INFO - __main__ - global_step = 10950, average loss = 0.1019882604497252
09/24/2023 03:27:25 - INFO - __main__ - global_step = 11000, average loss = 0.08660416512644588
09/24/2023 03:27:25 - INFO - __main__ - ***** Running evaluation *****
09/24/2023 03:27:25 - INFO - __main__ - Num examples = 10000
09/24/2023 03:27:25 - INFO - __main__ - Batch size = 16
09/24/2023 03:31:21 - INFO - __main__ - ***** Eval results *****
09/24/2023 03:31:21 - INFO - __main__ - acc = 0.8521
09/24/2023 03:35:00 - INFO - __main__ - global_step = 11050, average loss = 0.07959849048202158
09/24/2023 03:38:42 - INFO - __main__ - global_step = 11100, average loss = 0.08480279741248524
09/24/2023 03:42:25 - INFO - __main__ - global_step = 11150, average loss = 0.07940411141982623
09/24/2023 03:46:06 - INFO - __main__ - global_step = 11200, average loss = 0.08627346496621613
09/24/2023 03:49:48 - INFO - __main__ - global_step = 11250, average loss = 0.08515130840663915
09/24/2023 03:53:28 - INFO - __main__ - global_step = 11300, average loss = 0.08047833000106039
09/24/2023 03:57:07 - INFO - __main__ - global_step = 11350, average loss = 0.08884227124826338
09/24/2023 04:00:47 - INFO - __main__ - global_step = 11400, average loss = 0.09542614945773494
09/24/2023 04:04:26 - INFO - __main__ - global_step = 11450, average loss = 0.08332637125422479
09/24/2023 04:08:07 - INFO - __main__ - global_step = 11500, average loss = 0.09769482501476887
09/24/2023 04:08:07 - INFO - __main__ - ***** Running evaluation *****
09/24/2023 04:08:07 - INFO - __main__ - Num examples = 10000
09/24/2023 04:08:07 - INFO - __main__ - Batch size = 16
09/24/2023 04:12:02 - INFO - __main__ - ***** Eval results *****
09/24/2023 04:12:02 - INFO - __main__ - acc = 0.851
09/24/2023 04:15:51 - INFO - __main__ - global_step = 11550, average loss = 0.09137944790694746
09/24/2023 04:19:38 - INFO - __main__ - global_step = 11600, average loss = 0.07454582622590351
09/24/2023 04:23:20 - INFO - __main__ - global_step = 11650, average loss = 0.08284565404814202
09/24/2023 04:26:59 - INFO - __main__ - global_step = 11700, average loss = 0.0969824349215196
09/24/2023 04:30:41 - INFO - __main__ - global_step = 11750, average loss = 0.09389037321489013
09/24/2023 04:34:23 - INFO - __main__ - global_step = 11800, average loss = 0.08608788483528769
09/24/2023 04:38:05 - INFO - __main__ - global_step = 11850, average loss = 0.09322659247220144
09/24/2023 04:41:49 - INFO - __main__ - global_step = 11900, average loss = 0.09286965438863262
09/24/2023 04:45:31 - INFO - __main__ - global_step = 11950, average loss = 0.08214385434631367
09/24/2023 04:49:12 - INFO - __main__ - global_step = 12000, average loss = 0.09392224536069989
09/24/2023 04:49:12 - INFO - __main__ - ***** Running evaluation *****
09/24/2023 04:49:12 - INFO - __main__ - Num examples = 10000
09/24/2023 04:49:12 - INFO - __main__ - Batch size = 16
09/24/2023 04:53:07 - INFO - __main__ - ***** Eval results *****
09/24/2023 04:53:07 - INFO - __main__ - acc = 0.8514
09/24/2023 04:56:53 - INFO - __main__ - global_step = 12050, average loss = 0.08019034011129406
09/24/2023 05:00:34 - INFO - __main__ - global_step = 12100, average loss = 0.08210711618239656
09/24/2023 05:04:16 - INFO - __main__ - global_step = 12150, average loss = 0.08764273267355747
09/24/2023 05:08:02 - INFO - __main__ - global_step = 12200, average loss = 0.08758470895321807
09/24/2023 05:11:48 - INFO - __main__ - global_step = 12250, average loss = 0.07766548367973883
09/24/2023 05:15:27 - INFO - __main__ - global_step = 12300, average loss = 0.08148344823415755
09/24/2023 05:19:08 - INFO - __main__ - global_step = 12350, average loss = 0.08814196670609817
09/24/2023 05:22:50 - INFO - __main__ - global_step = 12400, average loss = 0.08936668847491092
09/24/2023 05:26:29 - INFO - __main__ - global_step = 12450, average loss = 0.08240065188347216
09/24/2023 05:30:12 - INFO - __main__ - global_step = 12500, average loss = 0.08683115135392655
09/24/2023 05:30:12 - INFO - __main__ - ***** Running evaluation *****
09/24/2023 05:30:12 - INFO - __main__ - Num examples = 10000
09/24/2023 05:30:12 - INFO - __main__ - Batch size = 16
09/24/2023 05:34:07 - INFO - __main__ - ***** Eval results *****
09/24/2023 05:34:07 - INFO - __main__ - acc = 0.8515
09/24/2023 05:37:53 - INFO - __main__ - global_step = 12550, average loss = 0.08871277472944712
09/24/2023 05:41:34 - INFO - __main__ - global_step = 12600, average loss = 0.08797626828309149
09/24/2023 05:45:11 - INFO - __main__ - global_step = 12650, average loss = 0.10095825259459616
09/24/2023 05:48:58 - INFO - __main__ - global_step = 12700, average loss = 0.07953012495926487
09/24/2023 05:52:41 - INFO - __main__ - global_step = 12750, average loss = 0.08843418272979761
09/24/2023 05:56:19 - INFO - __main__ - global_step = 12800, average loss = 0.07413991435227217
09/24/2023 05:59:59 - INFO - __main__ - global_step = 12850, average loss = 0.07519575585451094
09/24/2023 06:03:48 - INFO - __main__ - global_step = 12900, average loss = 0.08996981896292709
09/24/2023 06:07:28 - INFO - __main__ - global_step = 12950, average loss = 0.08996171029284597
09/24/2023 06:11:11 - INFO - __main__ - global_step = 13000, average loss = 0.08077499923689174
09/24/2023 06:11:11 - INFO - __main__ - ***** Running evaluation *****
09/24/2023 06:11:11 - INFO - __main__ - Num examples = 10000
09/24/2023 06:11:11 - INFO - __main__ - Batch size = 16
09/24/2023 06:15:06 - INFO - __main__ - ***** Eval results *****
09/24/2023 06:15:06 - INFO - __main__ - acc = 0.8527
09/24/2023 06:15:33 - INFO - __main__ - Saving model checkpoint to output/Output_ATOMIC-pseudo-wWC/deberta-v3-large_2i_atm_half_sample_name_5e-6
09/24/2023 06:19:13 - INFO - __main__ - global_step = 13050, average loss = 0.08447560470420284
09/24/2023 06:22:54 - INFO - __main__ - global_step = 13100, average loss = 0.08299598100831646
09/24/2023 06:26:32 - INFO - __main__ - global_step = 13150, average loss = 0.08393764879734135
09/24/2023 06:30:08 - INFO - __main__ - global_step = 13200, average loss = 0.09848508099505125
09/24/2023 06:33:47 - INFO - __main__ - global_step = 13250, average loss = 0.09162080157435412
09/24/2023 06:37:28 - INFO - __main__ - global_step = 13300, average loss = 0.0914362099875143
09/24/2023 06:41:09 - INFO - __main__ - global_step = 13350, average loss = 0.07781068138462616
09/24/2023 06:44:55 - INFO - __main__ - global_step = 13400, average loss = 0.08868030074576382
09/24/2023 06:48:36 - INFO - __main__ - global_step = 13450, average loss = 0.08357623873533157
09/24/2023 06:52:18 - INFO - __main__ - global_step = 13500, average loss = 0.08828085365807055
09/24/2023 06:52:18 - INFO - __main__ - ***** Running evaluation *****
09/24/2023 06:52:18 - INFO - __main__ - Num examples = 10000
09/24/2023 06:52:18 - INFO - __main__ - Batch size = 16
09/24/2023 06:56:14 - INFO - __main__ - ***** Eval results *****
09/24/2023 06:56:14 - INFO - __main__ - acc = 0.8499
09/24/2023 06:59:57 - INFO - __main__ - global_step = 13550, average loss = 0.08140521681067185
09/24/2023 07:03:37 - INFO - __main__ - global_step = 13600, average loss = 0.08341409597109305
09/24/2023 07:07:17 - INFO - __main__ - global_step = 13650, average loss = 0.08142950747031136
09/24/2023 07:10:56 - INFO - __main__ - global_step = 13700, average loss = 0.09089667504686076
09/24/2023 07:14:45 - INFO - __main__ - global_step = 13750, average loss = 0.07177684095106088
09/24/2023 07:18:24 - INFO - __main__ - global_step = 13800, average loss = 0.08592368463818274
09/24/2023 07:22:01 - INFO - __main__ - global_step = 13850, average loss = 0.08120634569131653
09/24/2023 07:25:48 - INFO - __main__ - global_step = 13900, average loss = 0.08909589071197843
09/24/2023 07:29:30 - INFO - __main__ - global_step = 13950, average loss = 0.08629100337015189
09/24/2023 07:33:10 - INFO - __main__ - global_step = 14000, average loss = 0.07722124511306902
09/24/2023 07:33:10 - INFO - __main__ - ***** Running evaluation *****
09/24/2023 07:33:10 - INFO - __main__ - Num examples = 10000
09/24/2023 07:33:10 - INFO - __main__ - Batch size = 16
09/24/2023 07:37:05 - INFO - __main__ - ***** Eval results *****
09/24/2023 07:37:05 - INFO - __main__ - acc = 0.8533
09/24/2023 07:37:32 - INFO - __main__ - Saving model checkpoint to output/Output_ATOMIC-pseudo-wWC/deberta-v3-large_2i_atm_half_sample_name_5e-6
09/24/2023 07:41:11 - INFO - __main__ - global_step = 14050, average loss = 0.08182521525057382
09/24/2023 07:44:48 - INFO - __main__ - global_step = 14100, average loss = 0.0902410151962249
09/24/2023 07:48:28 - INFO - __main__ - global_step = 14150, average loss = 0.07409664937826164
09/24/2023 07:52:12 - INFO - __main__ - global_step = 14200, average loss = 0.08879891355274594
09/24/2023 07:55:53 - INFO - __main__ - global_step = 14250, average loss = 0.09268313445325475
09/24/2023 07:59:30 - INFO - __main__ - global_step = 14300, average loss = 0.08798344542199629
09/24/2023 08:03:13 - INFO - __main__ - global_step = 14350, average loss = 0.09607475698139752
09/24/2023 08:06:59 - INFO - __main__ - global_step = 14400, average loss = 0.07222031111843535
09/24/2023 08:10:40 - INFO - __main__ - global_step = 14450, average loss = 0.07480319764195884
09/24/2023 08:14:19 - INFO - __main__ - global_step = 14500, average loss = 0.0838716509303049
09/24/2023 08:14:19 - INFO - __main__ - ***** Running evaluation *****
09/24/2023 08:14:19 - INFO - __main__ - Num examples = 10000
09/24/2023 08:14:19 - INFO - __main__ - Batch size = 16
09/24/2023 08:18:16 - INFO - __main__ - ***** Eval results *****
09/24/2023 08:18:16 - INFO - __main__ - acc = 0.8542
09/24/2023 08:18:42 - INFO - __main__ - Saving model checkpoint to output/Output_ATOMIC-pseudo-wWC/deberta-v3-large_2i_atm_half_sample_name_5e-6
09/24/2023 08:22:18 - INFO - __main__ - global_step = 14550, average loss = 0.08034001361316769
09/24/2023 08:25:55 - INFO - __main__ - global_step = 14600, average loss = 0.07689567271547276
09/24/2023 08:29:37 - INFO - __main__ - global_step = 14650, average loss = 0.09093381941405823
09/24/2023 08:33:25 - INFO - __main__ - global_step = 14700, average loss = 0.07569706412876258
09/24/2023 08:37:04 - INFO - __main__ - global_step = 14750, average loss = 0.07479940189456101
09/24/2023 08:40:47 - INFO - __main__ - global_step = 14800, average loss = 0.08522207450543647
09/24/2023 08:44:34 - INFO - __main__ - global_step = 14850, average loss = 0.0889268495763099
09/24/2023 08:48:16 - INFO - __main__ - global_step = 14900, average loss = 0.08616152721479012
09/24/2023 08:51:56 - INFO - __main__ - global_step = 14950, average loss = 0.07867321850848384
09/24/2023 08:55:39 - INFO - __main__ - global_step = 15000, average loss = 0.08426695556714549
09/24/2023 08:55:39 - INFO - __main__ - ***** Running evaluation *****
09/24/2023 08:55:39 - INFO - __main__ - Num examples = 10000
09/24/2023 08:55:39 - INFO - __main__ - Batch size = 16
09/24/2023 08:59:34 - INFO - __main__ - ***** Eval results *****
09/24/2023 08:59:34 - INFO - __main__ - acc = 0.8542
09/24/2023 09:03:12 - INFO - __main__ - global_step = 15050, average loss = 0.07868185437655484
09/24/2023 09:07:00 - INFO - __main__ - global_step = 15100, average loss = 0.08520105790423259
09/24/2023 09:10:42 - INFO - __main__ - global_step = 15150, average loss = 0.09536004922925713
09/24/2023 09:14:19 - INFO - __main__ - global_step = 15200, average loss = 0.08502999547665241
09/24/2023 09:17:58 - INFO - __main__ - global_step = 15250, average loss = 0.08957034896484402
09/24/2023 09:21:34 - INFO - __main__ - global_step = 15300, average loss = 0.07968287494033575
09/24/2023 09:25:14 - INFO - __main__ - global_step = 15350, average loss = 0.08545487473544199
09/24/2023 09:28:55 - INFO - __main__ - global_step = 15400, average loss = 0.08528959889241378
09/24/2023 09:32:38 - INFO - __main__ - global_step = 15450, average loss = 0.08095955706679887
09/24/2023 09:36:19 - INFO - __main__ - global_step = 15500, average loss = 0.08725373520917856
09/24/2023 09:36:19 - INFO - __main__ - ***** Running evaluation *****
09/24/2023 09:36:19 - INFO - __main__ - Num examples = 10000
09/24/2023 09:36:19 - INFO - __main__ - Batch size = 16
09/24/2023 09:40:15 - INFO - __main__ - ***** Eval results *****
09/24/2023 09:40:15 - INFO - __main__ - acc = 0.8545
09/24/2023 09:40:42 - INFO - __main__ - Saving model checkpoint to output/Output_ATOMIC-pseudo-wWC/deberta-v3-large_2i_atm_half_sample_name_5e-6
09/24/2023 09:44:22 - INFO - __main__ - global_step = 15550, average loss = 0.0843266883040269
09/24/2023 09:48:03 - INFO - __main__ - global_step = 15600, average loss = 0.07855528741223679
09/24/2023 09:51:47 - INFO - __main__ - global_step = 15650, average loss = 0.09478737017554523
09/24/2023 09:55:32 - INFO - __main__ - global_step = 15700, average loss = 0.08910313490487169
09/24/2023 09:59:16 - INFO - __main__ - global_step = 15750, average loss = 0.07736712342710234
09/24/2023 10:02:53 - INFO - __main__ - global_step = 15800, average loss = 0.08501649839432503
09/24/2023 10:06:37 - INFO - __main__ - global_step = 15850, average loss = 0.08495221398276044
09/24/2023 10:10:23 - INFO - __main__ - global_step = 15900, average loss = 0.08510145512744202
09/24/2023 10:14:07 - INFO - __main__ - global_step = 15950, average loss = 0.08335533107921947
09/24/2023 10:17:49 - INFO - __main__ - global_step = 16000, average loss = 0.09103241352764599
09/24/2023 10:17:49 - INFO - __main__ - ***** Running evaluation *****
09/24/2023 10:17:49 - INFO - __main__ - Num examples = 10000
09/24/2023 10:17:49 - INFO - __main__ - Batch size = 16
09/24/2023 10:21:45 - INFO - __main__ - ***** Eval results *****
09/24/2023 10:21:45 - INFO - __main__ - acc = 0.8549
09/24/2023 10:22:12 - INFO - __main__ - Saving model checkpoint to output/Output_ATOMIC-pseudo-wWC/deberta-v3-large_2i_atm_half_sample_name_5e-6
09/24/2023 10:25:53 - INFO - __main__ - global_step = 16050, average loss = 0.0808029190406296
09/24/2023 10:29:33 - INFO - __main__ - global_step = 16100, average loss = 0.0950222506766113
09/24/2023 10:33:15 - INFO - __main__ - global_step = 16150, average loss = 0.08560644885961664
09/24/2023 10:36:53 - INFO - __main__ - global_step = 16200, average loss = 0.07925290400889935
09/24/2023 10:40:34 - INFO - __main__ - global_step = 16250, average loss = 0.08252620983123052
09/24/2023 10:44:15 - INFO - __main__ - global_step = 16300, average loss = 0.08747977073326182
09/24/2023 10:47:55 - INFO - __main__ - global_step = 16350, average loss = 0.08805208059333382
09/24/2023 10:51:41 - INFO - __main__ - global_step = 16400, average loss = 0.07935831163018064
09/24/2023 10:55:23 - INFO - __main__ - global_step = 16450, average loss = 0.0807358610859228
09/24/2023 10:59:03 - INFO - __main__ - global_step = 16500, average loss = 0.0775301494665473
09/24/2023 10:59:03 - INFO - __main__ - ***** Running evaluation *****
09/24/2023 10:59:03 - INFO - __main__ - Num examples = 10000
09/24/2023 10:59:03 - INFO - __main__ - Batch size = 16
09/24/2023 11:02:59 - INFO - __main__ - ***** Eval results *****
09/24/2023 11:02:59 - INFO - __main__ - acc = 0.8532
09/24/2023 11:06:39 - INFO - __main__ - global_step = 16550, average loss = 0.06899339191091712
09/24/2023 11:10:25 - INFO - __main__ - global_step = 16600, average loss = 0.08612027997849508
09/24/2023 11:14:10 - INFO - __main__ - global_step = 16650, average loss = 0.08232147437905951
09/24/2023 11:17:50 - INFO - __main__ - global_step = 16700, average loss = 0.08530993062430753
09/24/2023 11:18:50 - INFO - __main__ - ***** Running evaluation *****
09/24/2023 11:18:50 - INFO - __main__ - Num examples = 10000
09/24/2023 11:18:50 - INFO - __main__ - Batch size = 16
09/24/2023 11:22:45 - INFO - __main__ - ***** Eval results *****
09/24/2023 11:22:45 - INFO - __main__ - acc = 0.8533
09/24/2023 11:22:45 - INFO - __main__ - global_step = 16713, average loss = 0.11041826268834619
09/24/2023 11:23:18 - INFO - __main__ - ***** Running evaluation *****
09/24/2023 11:23:18 - INFO - __main__ - Num examples = 10000
09/24/2023 11:23:18 - INFO - __main__ - Batch size = 16
09/24/2023 11:27:13 - INFO - __main__ - ***** Eval results *****
09/24/2023 11:27:13 - INFO - __main__ - acc = 0.8549
09/24/2023 11:27:16 - INFO - evaluate_DeBERTa - Namespace(dataset_file='../../../data/mcqa/eval/socialiqa_dev.jsonl', lm='output/Output_ATOMIC-pseudo-wWC/deberta-v3-large_2i_atm_half_sample_name_5e-6', out_dir='./eval_results/deberta-v3-large_2i_atm_half_sample_name_5e-6', device=0, reader='socialiqa', overwrite_output_dir=False, cache_dir=None)
09/24/2023 11:27:16 - INFO - evaluate_DeBERTa - Initializing output/Output_ATOMIC-pseudo-wWC/deberta-v3-large_2i_atm_half_sample_name_5e-6
09/24/2023 11:34:38 - INFO - evaluate_DeBERTa - Namespace(dataset_file='../../../data/mcqa/eval/winogrande_dev.jsonl', lm='output/Output_ATOMIC-pseudo-wWC/deberta-v3-large_2i_atm_half_sample_name_5e-6', out_dir='./eval_results/deberta-v3-large_2i_atm_half_sample_name_5e-6', device=0, reader='winogrande', overwrite_output_dir=False, cache_dir=None)
09/24/2023 11:34:38 - INFO - evaluate_DeBERTa - Initializing output/Output_ATOMIC-pseudo-wWC/deberta-v3-large_2i_atm_half_sample_name_5e-6
09/24/2023 11:37:05 - INFO - evaluate_DeBERTa - Namespace(dataset_file='../../../data/mcqa/eval/piqa_dev.jsonl', lm='output/Output_ATOMIC-pseudo-wWC/deberta-v3-large_2i_atm_half_sample_name_5e-6', out_dir='./eval_results/deberta-v3-large_2i_atm_half_sample_name_5e-6', device=0, reader='piqa', overwrite_output_dir=False, cache_dir=None)
09/24/2023 11:37:05 - INFO - evaluate_DeBERTa - Initializing output/Output_ATOMIC-pseudo-wWC/deberta-v3-large_2i_atm_half_sample_name_5e-6
09/24/2023 11:43:59 - INFO - evaluate_DeBERTa - Namespace(dataset_file='../../../data/mcqa/eval/commonsenseqa_dev.jsonl', lm='output/Output_ATOMIC-pseudo-wWC/deberta-v3-large_2i_atm_half_sample_name_5e-6', out_dir='./eval_results/deberta-v3-large_2i_atm_half_sample_name_5e-6', device=0, reader='commonsenseqa', overwrite_output_dir=False, cache_dir=None)
09/24/2023 11:43:59 - INFO - evaluate_DeBERTa - Initializing output/Output_ATOMIC-pseudo-wWC/deberta-v3-large_2i_atm_half_sample_name_5e-6
09/24/2023 11:49:43 - INFO - evaluate_DeBERTa - Namespace(dataset_file='../../../data/mcqa/eval/anli_dev.jsonl', lm='output/Output_ATOMIC-pseudo-wWC/deberta-v3-large_2i_atm_half_sample_name_5e-6', out_dir='./eval_results/deberta-v3-large_2i_atm_half_sample_name_5e-6', device=0, reader='anli', overwrite_output_dir=False, cache_dir=None)
09/24/2023 11:49:43 - INFO - evaluate_DeBERTa - Initializing output/Output_ATOMIC-pseudo-wWC/deberta-v3-large_2i_atm_half_sample_name_5e-6
09/24/2023 11:54:31 - INFO - __main__ - ***** Running evaluation *****
09/24/2023 11:54:31 - INFO - __main__ - Num examples = 120
09/24/2023 11:54:31 - INFO - __main__ - Batch size = 16
09/24/2023 11:54:47 - INFO - __main__ - ***** Eval results *****
09/24/2023 11:54:47 - INFO - __main__ - acc = 0.525