--- license: cc-by-nc-4.0 datasets: - turing-motors/LLaVA-Pretrain-JA - turing-motors/LLaVA-v1.5-Instruct-620K-JA language: - ja pipeline_tag: image-to-text tags: - vision - image-captioning - VQA --- # LLaVA-JP Model Card ## Model detail **Model type:** LLaVA-JP is a vision-language model that can converse about input images.
This model was trained by fine-tuning [lightblue/karasu-1.1B](https://huggingface.co/lightblue/karasu-1.1B) using [LLaVA](https://llava-vl.github.io/) method and [google/siglip-so400m-patch14-384](https://huggingface.co/google/siglip-so400m-patch14-384) is used as Image Encoder. **Training:** This model was initially trained with the Vision Projector using LLaVA-Pretrain-JA.
In the second phase, it was fine-tuned with LLaVA-v1.5-Instruct-620K-JA. resources for more information: https://github.com/tosiyuki/LLaVA-JP/tree/main **Comparing VLMs:** |Model|JA-VG-VQA-500
(ROUGE-L)|JA-VLM-Bench-In-the-Wild
(ROUGE-L)|Heron-Bench(Detail)|Heron-Bench(Conv)|Heron-Bench(Complex)|Heron-Bench(Average) |-|-|-|-|-|-|-| |[Japanese Stable VLM](https://huggingface.co/stabilityai/japanese-stable-vlm)|-|40.50|25.15|51.23|37.84|38.07| |[EvoVLM-JP-v1-7B](https://huggingface.co/SakanaAI/EvoVLM-JP-v1-7B)|**19.70**|**51.25**|50.31|44.42|40.47|45.07| |[Heron BLIP Japanese StableLM Base 7B llava-620k](https://huggingface.co/turing-motors/heron-chat-blip-ja-stablelm-base-7b-v1-llava-620k)|14.51|33.26|49.09|41.51|45.72|45.44| |[Heron GIT Japanese StableLM Base 7B](https://huggingface.co/turing-motors/heron-chat-git-ja-stablelm-base-7b-v1)|15.18|37.82|42.77|**54.20**|43.53|46.83| |[llava-jp-1.3b-v1.0-620k](https://huggingface.co/toshi456/llava-jp-1.3b-v1.0-620k)|12.69|44.58|**51.21**|41.05|45.95|44.84| |[llava-jp-1.3b-v1.1](https://huggingface.co/toshi456/llava-jp-1.3b-v1.1)|13.33|44.40|50.00|51.83|**48.98**|**50.39**| |[llava-jp-karasu-1.1b-v1.0-620k](https://huggingface.co/toshi456/llava-jp-karasu-1.1b-v1.0-620k)|13.23|44.59|42.16|43.79|40.35|42.16| ## How to use the model **1. Download dependencies** ``` git clone https://github.com/tosiyuki/LLaVA-JP.git -b develop ``` **2. Inference** ```python import requests import torch import transformers from PIL import Image from transformers.generation.streamers import TextStreamer from llava.constants import DEFAULT_IMAGE_TOKEN, IMAGE_TOKEN_INDEX from llava.conversation import conv_templates, SeparatorStyle from llava.model.llava_llama import LlavaLlamaForCausalLM from llava.train.arguments_dataclass import ModelArguments, DataArguments, TrainingArguments from llava.train.dataset import tokenizer_image_token if __name__ == "__main__": parser = transformers.HfArgumentParser( (ModelArguments, DataArguments, TrainingArguments)) model_args, data_args, training_args = parser.parse_args_into_dataclasses() model_path = 'toshi456/llava-jp-karasu-1.1b-v1.0-620k' device = "cuda" if torch.cuda.is_available() else "cpu" torch_dtype = torch.bfloat16 if device=="cuda" else torch.float32 model = LlavaLlamaForCausalLM.from_pretrained( model_path, low_cpu_mem_usage=True, use_safetensors=True, torch_dtype=torch_dtype, device_map=device, ) tokenizer = transformers.AutoTokenizer.from_pretrained( model_path, model_max_length=1532, padding_side="right", use_fast=False, ) model.eval() conv_mode = "karasu" conv = conv_templates[conv_mode].copy() # image pre-process image_url = "https://huggingface.co/rinna/bilingual-gpt-neox-4b-minigpt4/resolve/main/sample.jpg" image = Image.open(requests.get(image_url, stream=True).raw).convert('RGB') image_size = model.get_model().vision_tower.image_processor.size["height"] if model.get_model().vision_tower.scales is not None: image_size = model.get_model().vision_tower.image_processor.size["height"] * len(model.get_model().vision_tower.scales) if device == "cuda": image_tensor = model.get_model().vision_tower.image_processor( image, return_tensors='pt', size={"height": image_size, "width": image_size} )['pixel_values'].half().cuda().to(torch_dtype) else: image_tensor = model.get_model().vision_tower.image_processor( image, return_tensors='pt', size={"height": image_size, "width": image_size} )['pixel_values'].to(torch_dtype) # create prompt # ユーザー: \n{prompt} prompt = "猫の隣には何がありますか?" inp = DEFAULT_IMAGE_TOKEN + '\n' + prompt conv.append_message(conv.roles[0], inp) conv.append_message(conv.roles[1], None) prompt = conv.get_prompt() input_ids = tokenizer_image_token( prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt' ).unsqueeze(0) if device == "cuda": input_ids = input_ids.to(device) input_ids = input_ids[:, :-1] stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2 keywords = [stop_str] streamer = TextStreamer(tokenizer, skip_prompt=True, timeout=20.0) # predict with torch.inference_mode(): model.generate( inputs=input_ids, images=image_tensor, do_sample=True, temperature=0.1, top_p=1.0, max_new_tokens=512, streamer=streamer, use_cache=True, ) """猫の隣にはノートパソコンがあります。""" ``` ## Training dataset **Stage1 Pretrain** - [LLaVA-Pretrain-JA](https://huggingface.co/datasets/turing-motors/LLaVA-Pretrain-JA) **Stage2 Fine-tuning** - [LLaVA-v1.5-Instruct-620K-JA](https://huggingface.co/datasets/turing-motors/LLaVA-v1.5-Instruct-620K-JA) ## Acknowledgement - [LLaVA](https://llava-vl.github.io/) ## License cc-by-nc-4.0