---
license: cc-by-nc-4.0
language:
- ja
pipeline_tag: image-to-text
tags:
- vision
- image-captioning
- VQA
---
# Chat-Vector-LLaVA-v1.5-7b-JA Model Card
## Model detail
**Model type:**
Chat-Vector-LLaVA-v1.5-7b-JA is a vision-language model that can converse about input images in Japanese.
This model was created by adding and subtracting the weights of the [llava-v1.5-7b](https://huggingface.co/liuhaotian/llava-v1.5-7b), [Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf), and [ELYZA-japanese-Llama-2-7b](https://huggingface.co/elyza/ELYZA-japanese-Llama-2-7b) models using the Chat Vector method as follows.
```
ELYZA-japanese-Llama-2-7b + (llava-v1.5-7b - Llama-2-7b-hf)
```
Chat-Vector-LLaVA-v1.5-7b-JAは、入力画像について日本語で会話できるvision-language modelです。
このモデルはChat Vectorの手法で[llava-v1.5-7b](https://huggingface.co/liuhaotian/llava-v1.5-7b)と[Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf)と[ELYZA-japanese-Llama-2-7b](https://huggingface.co/elyza/ELYZA-japanese-Llama-2-7b)のモデルの重みを以下の通り加減算することで作成しました。
```
ELYZA-japanese-Llama-2-7b + (llava-v1.5-7b - Llama-2-7b-hf)
```
**Comparing VLMs**
|Model|JA-VG-VQA-500
(ROUGE-L)|JA-VLM-Bench-In-the-Wild
(ROUGE-L)|Heron-Bench(Detail)|Heron-Bench(Conv)|Heron-Bench(Complex)|Heron-Bench(Average)
|-|-|-|-|-|-|-|
|[Japanese Stable VLM](https://huggingface.co/stabilityai/japanese-stable-vlm)|-|40.50|25.15|51.23|37.84|38.07|
|[EvoVLM-JP-v1-7B](https://huggingface.co/SakanaAI/EvoVLM-JP-v1-7B)|**19.70**|**51.25**|50.31|44.42|40.47|45.07|
|[Heron BLIP Japanese StableLM Base 7B llava-620k](https://huggingface.co/turing-motors/heron-chat-blip-ja-stablelm-base-7b-v1-llava-620k)|14.51|33.26|49.09|41.51|45.72|45.44|
|[Heron GIT Japanese StableLM Base 7B](https://huggingface.co/turing-motors/heron-chat-git-ja-stablelm-base-7b-v1)|15.18|37.82|42.77|**54.20**|43.53|46.83|
|[llava-jp-1.3b-v1.0-620k](https://huggingface.co/toshi456/llava-jp-1.3b-v1.0-620k)|12.69|44.58|51.21|41.05|45.95|44.84|
|[llava-jp-1.3b-v1.1](https://huggingface.co/toshi456/llava-jp-1.3b-v1.1)|13.33|44.40|50.00|51.83|**48.98**|**50.39**|
|[chat-vector-llava-v1.5-7b-ja](https://huggingface.co/toshi456/chat-vector-llava-v1.5-7b-ja)|18.64|42.23|**53.61**|44.36|44.48|46.10|
![image/png](https://cdn-uploads.huggingface.co/production/uploads/630af71ffaaea618ebc973db/jSW9RYPccrxaqrxntwtUb.png)
## How to use the model
> [!WARNING]
> The code for the demo worked with 4.34.1 of transformers, but did not work properly with 4.37.2. We have not tested the code in between versions or in the latest version.
> デモ用のコードはtransformersの4.34.1では動作しましたが、4.37.2では正常に動作しませんでした。間のバージョンや最新のバージョンでは動作確認していません。
**1. Download dependencies**
```
git clone https://github.com/tosiyuki/vlm-chat-vector-ja.git
```
**2. Inference**
```python
import requests
import torch
import transformers
from PIL import Image
from transformers.generation.streamers import TextStreamer
from llava.constants import DEFAULT_IMAGE_TOKEN, IMAGE_TOKEN_INDEX
from llava.conversation import conv_templates, SeparatorStyle
from llava.model.language_model.llava_llama import LlavaLlamaForCausalLM
from llava.mm_utils import tokenizer_image_token, process_images
if __name__ == "__main__":
model_path = 'toshi456/chat-vector-llava-v1.5-7b-ja'
device = "cuda" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.bfloat16 if device=="cuda" else torch.float32
model = LlavaLlamaForCausalLM.from_pretrained(
model_path,
device_map=device,
low_cpu_mem_usage=True,
use_safetensors=True,
torch_dtype=torch.float16,
).eval()
tokenizer = transformers.AutoTokenizer.from_pretrained(
model_path,
model_max_length=1024,
padding_side="right",
use_fast=False,
)
model.get_model().vision_tower.load_model()
model = model.to(device)
eos_token_id_list = [
tokenizer.eos_token_id,
tokenizer.bos_token_id,
]
# image pre-process
image_url = "https://huggingface.co/rinna/bilingual-gpt-neox-4b-minigpt4/resolve/main/sample.jpg"
image = Image.open(requests.get(image_url, stream=True).raw).convert('RGB')
if not isinstance(image, list):
image = [image]
image_tensor = process_images(image, model.get_model().vision_tower.image_processor, model.config)
if type(image_tensor) is list:
image_tensor = [image.to(model.device, dtype=torch.float16) for image in image_tensor]
else:
image_tensor = image_tensor.to(model.device, dtype=torch.float16)
# create prompt
# ユーザー: \n{prompt}
conv_mode = "llava_llama_2"
conv = conv_templates[conv_mode].copy()
prompt = "猫の隣には何がありますか?"
inp = DEFAULT_IMAGE_TOKEN + '\n' + prompt
conv.append_message(conv.roles[0], inp)
conv.append_message(conv.roles[1], None)
prompt = conv.get_prompt()
input_ids = tokenizer_image_token(
prompt,
tokenizer,
IMAGE_TOKEN_INDEX,
return_tensors='pt'
).unsqueeze(0)
if device == "cuda":
input_ids = input_ids.to(device)
stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2
keywords = [stop_str]
streamer = TextStreamer(tokenizer, skip_prompt=True, timeout=20.0)
# parameter
temperature = 0.0
top_p = 1.0
max_new_tokens=256
# predict
with torch.inference_mode():
model.generate(
inputs=input_ids,
images=image_tensor,
do_sample=True if temperature > 0 else False,
temperature=temperature,
top_p=top_p,
max_new_tokens=max_new_tokens,
streamer=streamer,
use_cache=True,
eos_token_id=eos_token_id_list,
)
"""猫の隣には、コンピューター(パソコン)があります。"""
```
## Acknowledgement
- [LLaVA](https://llava-vl.github.io/)
- [Chat Vector](https://arxiv.org/abs/2310.04799)
## License
cc-by-nc-4.0