File size: 10,443 Bytes
a076225
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
875709b
a076225
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
---
language:
  - en
  - ja
library_name: transformers
pipeline_tag: text-generation
license: llama3
model_type: llama
---

# Llama3 Swallow

Our Swallow model has undergone continual pre-training from the [Llama 3 family](https://huggingface.co/collections/meta-llama/meta-llama-3-66214712577ca38149ebb2b6), primarily with the addition of Japanese language data. The Instruct versions use supervised fine-tuning (SFT) and Chat Vector. Links to other models can be found in the index.


# Model Release Updates

We are excited to share the release schedule for our latest models:
- **July 1, 2024**: Released the [Llama-3-Swallow-8B-v0.1](https://huggingface.co/tokyotech-llm/Llama-3-Swallow-8B-v0.1), [Llama-3-Swallow-8B-Instruct-v0.1](https://huggingface.co/tokyotech-llm/Llama-3-Swallow-8B-Instruct-v0.1), [Llama-3-Swallow-70B-v0.1](https://huggingface.co/tokyotech-llm/Llama-3-Swallow-70B-v0.1), and [Llama-3-Swallow-70B-Instruct-v0.1](https://huggingface.co/tokyotech-llm/Llama-3-Swallow-70B-Instruct-v0.1).

## Swallow Model Index

|Model|Llama-3-Swallow|Llama3 Swallow Instruct|
|---|---|---|
|8B| [Link](https://huggingface.co/tokyotech-llm/Llama-3-Swallow-8B-v0.1) | [Link](https://huggingface.co/tokyotech-llm/Llama-3-Swallow-8B-Instruct-v0.1) |
|70B| [Link](https://huggingface.co/tokyotech-llm/Llama-3-Swallow-70B-v0.1) | [Link](https://huggingface.co/tokyotech-llm/Llama-3-Swallow-70B-Instruct-v0.1) |

![logo](./logo.png)

This repository provides large language models developed by [Swallow-LLM](https://swallow-llm.github.io/).
Read our [blog post](https://zenn.dev/tokyotech_lm/articles/f65989d76baf2c).

## Model Details

* **Model type**: Please refer to [Llama 3 MODEL_CARD](https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md) for details on the model architecture.
* **Language(s)**: Japanese English
* **Library**: [Megatron-LM](https://github.com/NVIDIA/Megatron-LM) 
* **Tokenizer**: Please refer to [Llama 3 blog](https://ai.meta.com/blog/meta-llama-3/) for details on the tokenizer.
* **Contact**: swallow[at]nlp.c.titech.ac.jp 

## Model Performance

### Japanese tasks

|Model|Size|JCom.|JEMHopQA|NIILC|JSQuAD|XL-Sum|MGSM|WMT20-en-ja|WMT20-ja-en|JMMLU|JHumanEval|Ja Avg|
|---|---|---|---|---|---|---|---|---|---|---|---|---|
|   |   |4-shot|4-shot|4-shot|4-shot|1-shot|4-shot|4-shot|4-shot|5-shot|0-shot|   |
|   |   |EM acc|Char-F1|Char-F1|Char-F1|ROUGE-2|EM acc|BLEU|BLEU|EM acc|pass@1|   |
|karakuri-lm-70b-chat-v0.1|70B|0.8847|0.5139|0.5668|0.9096|0.1369|0.2800|0.2526|0.2095|0.4648|0.2354|0.4454|
|Meta-Llama-3-70B-Instruct|70B|0.9419|0.6114|0.5506|0.9164|0.1912|0.7200|0.2708|0.2350|0.6789|0.6610|0.5777|
|Llama-3-Swallow-70B-Instruct-v0.1|70B|0.9607|0.6188|0.6026|0.9236|0.1389|0.6560|0.2724|0.2532|0.6572|0.6000|0.5683|
|Qwen2-72B-Instruct|72B|0.9634|0.6268|0.5418|0.9210|0.1644|0.7840|0.2592|0.2327|0.7713|0.6909|0.5955|

### English tasks

|Model|Size|OpenBookQA|TriviaQA|HellaSWAG|SQuAD2.0|XWINO|MMLU|GSM8K|BBH|HumanEval|EnAvg|
|---|---|---|---|---|---|---|---|---|---|---|---|
|||4-shot|4-shot|4-shot|4-shot|4-shot|5-shot|4-shot|3-shot|0-shot||
|||Acc|EMacc|Acc|EMacc|Acc|Acc|EMacc|CoTEMAcc|pass@1||
|karakuri-lm-70b-chat-v0.1|70B|0.4100|0.6873|0.6315|0.3677|0.9049|0.5941|0.3882|0.5724|0.2305|0.5319|
|Meta-Llama-3-70B-Instruct|70B|00.4400|0.7999|0.6552|0.4024|0.9127|0.7992|0.9052|0.8326|0.7555|0.7225|
|Llama-3-Swallow-70B-Instruct-v0.1|70B|0.4520|0.8174|0.6758|0.4050|0.9230|0.7883|0.8688|0.8152|0.6890|0.7150|
|Qwen2-72B-Instruct|72B|0.4360|0.7588|0.6857|0.3913|0.9110|0.8391|0.8499|0.2436|0.6939|0.6455|

## MT-Bench JA

|Model|Size|coding|extraction|humanities|math|reasoning|roleplay|stem|writing|JMTAvg|
|---|---|---|---|---|---|---|---|---|---|---|
|karakuri-lm-70b-chat-v0.1|70B|0.2804|0.5862|0.6240|0.2934|0.4183|0.5530|0.4859|0.5964|0.4797|
|Meta-Llama-3-70B-Instruct|70B|0.5969|0.8410|0.7120|0.4481|0.4884|0.7117|0.6510|0.6900|0.6424|
|Llama-3-Swallow-70B-Instruct-v0.1|70B|0.5269|0.7250|0.5690|0.4669|0.6121|0.6238|0.5533|0.5698|0.5809|
|Qwen2-72B-Instruct|72B|0.5699|0.7858|0.8222|0.5096|0.7032|0.7963|0.7728|0.8223|0.7228|
|GPT-3.5(gpt-3.5-turbo-0125)| |0.6851|0.7641|0.7414|0.5522|0.5128|0.7104|0.6266|0.7361|0.6661|
|GPT-4o(gpt-4o-2024-05-13)| |0.7296|0.8540|0.8646|0.6641|0.6661|0.8274|0.8184|0.8085|0.7791|

## Evaluation Benchmarks

### Japanese evaluation benchmarks

We used llm-jp-eval(v1.3.0), JP Language Model Evaluation Harness(commit #9b42d41) and Code Generation LM Evaluation Harness(commit #0261c52). The details are as follows:

- Multiple-choice question answering (JCommonsenseQA [Kurihara et al., 2022])
- Open-ended question answering (JEMHopQA [Ishii et al., 2024])
- Open-ended question answering (NIILC [関根, 2003])
- Machine reading comprehension (JSQuAD [Kurihara et al., 2022])
- Automatic summarization (XL-Sum [Hasan et al., 2021])
- Machine translation (WMT2020 ja-en [Barrault et al., 2020])
- Machine translation (WMT2020 en-ja [Barrault et al., 2020])
- Mathematical reasoning (MGSM [Shi et al., 2023])
- Academic exams (JMMLU [尹ら, 2024])
- Code generation (JHumanEval [佐藤ら, 2024])

### English evaluation benchmarks

We used the Language Model Evaluation Harness(v.0.4.2) and Code Generation LM Evaluation Harness(commit #0261c52). The details are as follows:

- Multiple-choice question answering (OpenBookQA [Mihaylov et al., 2018])
- Open-ended question answering (TriviaQA [Joshi et al., 2017])
- Machine reading comprehension (SQuAD2 [Rajpurkar et al., 2018])
- Commonsense reasoning (XWINO [Tikhonov and Ryabinin, 2021])
- Natural language inference (HellaSwag [Zellers et al., 2019])
- Mathematical reasoning (GSM8K [Cobbe et al., 2021])
- Reasoning (BBH (BIG-Bench-Hard) [Suzgun et al., 2023])
- Academic exams (MMLU [Hendrycks et al., 2021])
- Code generation (HumanEval [Chen et al., 2021])

### MT-Bench JA

We used [Japanese MT-Bench](https://wandb.ai/wandb-japan/llm-leaderboard/artifacts/dataset/mtbench_ja_question) to assess the instruction-following capabilities of models.
We utilized the following settings:

- Implemantation: FastChat [Zheng+, 2023] (commit #e86e70d0)
- Question: [Nejumi LLM-Leaderboard NEO, mtbench_ja_question_v3](https://wandb.ai/wandb-japan/llm-leaderboard/artifacts/dataset/mtbench_ja_question/v3)
- Reference Answer: [Nejumi LLM-Leaderboard NEO, mtbench_ja_referenceanswer_v1](https://wandb.ai/wandb-japan/llm-leaderboard/artifacts/dataset/mtbench_ja_referenceanswer/v1)
- Prompt for Judge: [Nejumi LLM-Lederboard NEO, mtbench_ja_prompt_v1](https://wandb.ai/wandb-japan/llm-leaderboard/artifacts/dataset/mtbench_ja_prompt/v1)
- Judge: `gpt-4-1106-preview`
- Scoring: Absolute scale normalized to a 0-1 range, averaged over five runs.

## Usage

```sh
pip install vllm
```

```python
from transformers import AutoTokenizer
from vllm import LLM, SamplingParams

model_name = "tokyotech-llm/Llama-3-Swallow-70B-Instruct-v0.1"

tokenizer = AutoTokenizer.from_pretrained(model_name)
llm = LLM(
    model=model_name,
    tensor_parallel_size=4,
)

sampling_params = SamplingParams(
    temperature=0.6, top_p=0.9, max_tokens=512, stop="<|eot_id|>"
)


message = [
    {"role": "system", "content": "あなたは誠実で優秀な日本人のアシスタントです。"},
    {
        "role": "user",
        "content": "東京の夜空に打ち上がっている花火の下、向かい合っている燕とラマの温かい物語を書いてください。",
    },
]
prompt = tokenizer.apply_chat_template(
    message, tokenize=False, add_generation_prompt=True
)

output = llm.generate(prompt, sampling_params)

print(output[0].outputs[0].text)

```

## Training Datasets

### Instruction Tuning

The following datasets were used for the instruction tuning. 

- [OpenAssistant Conversations Dataset EN top-1 thread](https://huggingface.co/datasets/OpenAssistant/oasst2)
- [OpenAssistant Conversations Dataset](https://huggingface.co/datasets/llm-jp/oasst1-21k-ja) was used, where human utterances are included but the responses are not used. Instead, the responses were generated using the [Mixtral-8x7B-Instruct-v0.1](https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1) model.

 
## Risks and Limitations

The models released here are still in the early stages of our research and development and have not been tuned to ensure outputs align with human intent and safety considerations.

## Acknowledgements

We thank Meta Research for releasing Llama 3 under an open license for others to build on.

Our project is supported by the [Large Generative AI Development Support Program](https://abci.ai/en/link/lfm_support_program.html) of the National Institute of Advanced Industrial Science and Technology. 

## License

[META LLAMA 3 COMMUNITY LICENSE](https://llama.meta.com/llama3/license/)

## Authors

Here are the team members:
- From [Tokyo Institute of Technology Okazaki Laboratory](https://www.nlp.c.titech.ac.jp/index.en.html), the following members:
  - [Naoaki Okazaki](https://www.chokkan.org/index.ja.html)
  - [Sakae Mizuki](https://s-mizuki-nlp.github.io/)
  - [Youmi Ma](https://www.nlp.c.titech.ac.jp/member/youmi.en.html)
  - [Koki Maeda](https://sites.google.com/view/silviase)
  - [Kakeru Hattori](https://aya-se.vercel.app/)
  - [Masanari Ohi](https://sites.google.com/view/masanariohi)
  - [Taihei Shiotani](https://github.com/inatoihs)
  - [Koshiro Saito](https://sites.google.com/view/koshiro-saito)
- From [Tokyo Institute of Technology YOKOTA Laboratory](https://www.rio.gsic.titech.ac.jp/en/index.html), the following members:
  - [Rio Yokota](https://twitter.com/rioyokota)
  - [Kazuki Fujii](https://twitter.com/okoge_kaz)
  - [Taishi Nakamura](https://twitter.com/Setuna7777_2)
  - [Takumi Okamoto](https://www.linkedin.com/in/takumi-okamoto)
  - [Ishida Shigeki](https://www.wantedly.com/id/reborn27)
- From [Artificial Intelligence Research Center, AIST, Japan](https://www.airc.aist.go.jp/en/teams/), the following members:
  - [Hiroya Takamura](https://sites.google.com/view/hjtakamura)

## How to Cite

If you find our work helpful, please feel free to cite us.

```tex
@misc{llama3swallow,
      title={Llama 3 Swallow},
      url={https://swallow-llm.github.io/llama3-swallow.en.html},
      author={Swallow LLM},
      year={2024},
}
```

### Citations

```tex
@article{llama3modelcard,
    title={Llama 3 Model Card},
    author={AI@Meta},
    year={2024},
    url = {https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md}
}
```