asahi417 commited on
Commit
779e9d2
1 Parent(s): 1f94ce0

model update

Browse files
README.md ADDED
@@ -0,0 +1,150 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ datasets:
3
+ - ontonotes5
4
+ metrics:
5
+ - f1
6
+ - precision
7
+ - recall
8
+ model-index:
9
+ - name: tner/roberta-large-ontonotes5
10
+ results:
11
+ - task:
12
+ name: Token Classification
13
+ type: token-classification
14
+ dataset:
15
+ name: ontonotes5
16
+ type: ontonotes5
17
+ args: ontonotes5
18
+ metrics:
19
+ - name: F1
20
+ type: f1
21
+ value: 0.908632361399938
22
+ - name: Precision
23
+ type: precision
24
+ value: 0.905148095909732
25
+ - name: Recall
26
+ type: recall
27
+ value: 0.9121435551212579
28
+ - name: F1 (macro)
29
+ type: f1_macro
30
+ value: 0.8265477704565624
31
+ - name: Precision (macro)
32
+ type: precision_macro
33
+ value: 0.8170668848546687
34
+ - name: Recall (macro)
35
+ type: recall_macro
36
+ value: 0.8387672780349001
37
+ - name: F1 (entity span)
38
+ type: f1_entity_span
39
+ value: 0.9284544931640193
40
+ - name: Precision (entity span)
41
+ type: precision_entity_span
42
+ value: 0.9248942172073342
43
+ - name: Recall (entity span)
44
+ type: recall_entity_span
45
+ value: 0.9320422848005685
46
+
47
+ pipeline_tag: token-classification
48
+ widget:
49
+ - text: "Jacob Collier is a Grammy awarded artist from England."
50
+ example_title: "NER Example 1"
51
+ ---
52
+ # tner/roberta-large-ontonotes5
53
+
54
+ This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on the
55
+ [tner/ontonotes5](https://huggingface.co/datasets/tner/ontonotes5) dataset.
56
+ Model fine-tuning is done via [T-NER](https://github.com/asahi417/tner)'s hyper-parameter search (see the repository
57
+ for more detail). It achieves the following results on the test set:
58
+ - F1 (micro): 0.908632361399938
59
+ - Precision (micro): 0.905148095909732
60
+ - Recall (micro): 0.9121435551212579
61
+ - F1 (macro): 0.8265477704565624
62
+ - Precision (macro): 0.8170668848546687
63
+ - Recall (macro): 0.8387672780349001
64
+
65
+ The per-entity breakdown of the F1 score on the test set are below:
66
+ - cardinal_number: 0.8605277329025309
67
+ - date: 0.872996300863132
68
+ - event: 0.7424242424242424
69
+ - facility: 0.7732342007434945
70
+ - geopolitical_area: 0.9687148323205043
71
+ - group: 0.9470588235294117
72
+ - language: 0.7499999999999999
73
+ - law: 0.6666666666666666
74
+ - location: 0.7593582887700535
75
+ - money: 0.901098901098901
76
+ - ordinal_number: 0.85785536159601
77
+ - organization: 0.9227360841872057
78
+ - percent: 0.9171428571428571
79
+ - person: 0.9556004036326943
80
+ - product: 0.7857142857142858
81
+ - quantity: 0.7945205479452055
82
+ - time: 0.6870588235294116
83
+ - work_of_art: 0.7151515151515151
84
+
85
+ For F1 scores, the confidence interval is obtained by bootstrap as below:
86
+ - F1 (micro):
87
+ - 90%: [0.9039454247544766, 0.9128956119702822]
88
+ - 95%: [0.9030263216115454, 0.9138350859566045]
89
+ - F1 (macro):
90
+ - 90%: [0.9039454247544766, 0.9128956119702822]
91
+ - 95%: [0.9030263216115454, 0.9138350859566045]
92
+
93
+ Full evaluation can be found at [metric file of NER](https://huggingface.co/tner/roberta-large-ontonotes5/raw/main/eval/metric.json)
94
+ and [metric file of entity span](https://huggingface.co/tner/roberta-large-ontonotes5/raw/main/eval/metric_span.json).
95
+
96
+ ### Usage
97
+ This model can be used through the [tner library](https://github.com/asahi417/tner). Install the library via pip
98
+ ```shell
99
+ pip install tner
100
+ ```
101
+ and activate model as below.
102
+ ```python
103
+ from tner import TransformersNER
104
+ model = TransformersNER("tner/roberta-large-ontonotes5")
105
+ model.predict(["Jacob Collier is a Grammy awarded English artist from London"])
106
+ ```
107
+ It can be used via transformers library but it is not recommended as CRF layer is not supported at the moment.
108
+
109
+ ### Training hyperparameters
110
+
111
+ The following hyperparameters were used during training:
112
+ - dataset: ['tner/ontonotes5']
113
+ - dataset_split: train
114
+ - dataset_name: None
115
+ - local_dataset: None
116
+ - model: roberta-large
117
+ - crf: True
118
+ - max_length: 128
119
+ - epoch: 15
120
+ - batch_size: 64
121
+ - lr: 1e-05
122
+ - random_seed: 42
123
+ - gradient_accumulation_steps: 1
124
+ - weight_decay: None
125
+ - lr_warmup_step_ratio: 0.1
126
+ - max_grad_norm: 10.0
127
+
128
+ The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/tner/roberta-large-ontonotes5/raw/main/trainer_config.json).
129
+
130
+ ### Reference
131
+ If you use any resource from T-NER, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/).
132
+
133
+ ```
134
+
135
+ @inproceedings{ushio-camacho-collados-2021-ner,
136
+ title = "{T}-{NER}: An All-Round Python Library for Transformer-based Named Entity Recognition",
137
+ author = "Ushio, Asahi and
138
+ Camacho-Collados, Jose",
139
+ booktitle = "Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations",
140
+ month = apr,
141
+ year = "2021",
142
+ address = "Online",
143
+ publisher = "Association for Computational Linguistics",
144
+ url = "https://aclanthology.org/2021.eacl-demos.7",
145
+ doi = "10.18653/v1/2021.eacl-demos.7",
146
+ pages = "53--62",
147
+ abstract = "Language model (LM) pretraining has led to consistent improvements in many NLP downstream tasks, including named entity recognition (NER). In this paper, we present T-NER (Transformer-based Named Entity Recognition), a Python library for NER LM finetuning. In addition to its practical utility, T-NER facilitates the study and investigation of the cross-domain and cross-lingual generalization ability of LMs finetuned on NER. Our library also provides a web app where users can get model predictions interactively for arbitrary text, which facilitates qualitative model evaluation for non-expert programmers. We show the potential of the library by compiling nine public NER datasets into a unified format and evaluating the cross-domain and cross- lingual performance across the datasets. The results from our initial experiments show that in-domain performance is generally competitive across datasets. However, cross-domain generalization is challenging even with a large pretrained LM, which has nevertheless capacity to learn domain-specific features if fine- tuned on a combined dataset. To facilitate future research, we also release all our LM checkpoints via the Hugging Face model hub.",
148
+ }
149
+
150
+ ```
config.json CHANGED
@@ -1,5 +1,5 @@
1
  {
2
- "_name_or_path": "tner_ckpt/ontonotes5_roberta_large/best_model",
3
  "architectures": [
4
  "RobertaForTokenClassification"
5
  ],
 
1
  {
2
+ "_name_or_path": "tner_ckpt/ontonotes5_roberta_large/model_rcsnba/epoch_5",
3
  "architectures": [
4
  "RobertaForTokenClassification"
5
  ],
eval/metric.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"micro/f1": 0.908632361399938, "micro/f1_ci": {"90": [0.9039454247544766, 0.9128956119702822], "95": [0.9030263216115454, 0.9138350859566045]}, "micro/recall": 0.9121435551212579, "micro/precision": 0.905148095909732, "macro/f1": 0.8265477704565624, "macro/f1_ci": {"90": [0.8121417948576588, 0.8385364082840391], "95": [0.8096775897485154, 0.8411472970680649]}, "macro/recall": 0.8387672780349001, "macro/precision": 0.8170668848546687, "per_entity_metric": {"cardinal_number": {"f1": 0.8605277329025309, "f1_ci": {"90": [0.843480407184333, 0.8774608056933718], "95": [0.8404683840749414, 0.8804760960168132]}, "precision": 0.8665943600867679, "recall": 0.8545454545454545}, "date": {"f1": 0.872996300863132, "f1_ci": {"90": [0.8597628567219345, 0.8854157808847528], "95": [0.8568743233248947, 0.887132819190551]}, "precision": 0.8623629719853837, "recall": 0.8838951310861424}, "event": {"f1": 0.7424242424242424, "f1_ci": {"90": [0.6564641221374047, 0.8194444444444444], "95": [0.6382887013939839, 0.8345352064804848]}, "precision": 0.7101449275362319, "recall": 0.7777777777777778}, "facility": {"f1": 0.7732342007434945, "f1_ci": {"90": [0.7127132266874755, 0.8299636133523177], "95": [0.6999887892376682, 0.8435233798195244]}, "precision": 0.7761194029850746, "recall": 0.7703703703703704}, "geopolitical_area": {"f1": 0.9687148323205043, "f1_ci": {"90": [0.963340376224374, 0.973711244759882], "95": [0.9626303980811273, 0.9744505463479681]}, "precision": 0.9768497503404449, "recall": 0.9607142857142857}, "group": {"f1": 0.9470588235294117, "f1_ci": {"90": [0.9351070280371709, 0.9580140382076361], "95": [0.932251234137772, 0.9600983382751339]}, "precision": 0.9371362048894063, "recall": 0.9571938168846611}, "language": {"f1": 0.7499999999999999, "f1_ci": {"90": [0.608695652173913, 0.851103230890465], "95": [0.5853150406504064, 0.8666981132075472]}, "precision": 0.8333333333333334, "recall": 0.6818181818181818}, "law": {"f1": 0.6666666666666666, "f1_ci": {"90": [0.5510204081632654, 0.7715238095238094], "95": [0.5318354120811933, 0.7912915851272019]}, "precision": 0.6170212765957447, "recall": 0.725}, "location": {"f1": 0.7593582887700535, "f1_ci": {"90": [0.7075784227499267, 0.8066365067926441], "95": [0.6966818766818768, 0.8132445889832065]}, "precision": 0.7282051282051282, "recall": 0.7932960893854749}, "money": {"f1": 0.901098901098901, "f1_ci": {"90": [0.8723662818004926, 0.9285766271574131], "95": [0.8651037567084079, 0.9333382570162481]}, "precision": 0.8885448916408669, "recall": 0.9140127388535032}, "ordinal_number": {"f1": 0.85785536159601, "f1_ci": {"90": [0.8256974045428536, 0.8873578751164959], "95": [0.8192771084337349, 0.8941270912034538]}, "precision": 0.8349514563106796, "recall": 0.882051282051282}, "organization": {"f1": 0.9227360841872057, "f1_ci": {"90": [0.9125116290604286, 0.9314409091710344], "95": [0.9105165804108345, 0.9326758594060797]}, "precision": 0.9174008810572687, "recall": 0.928133704735376}, "percent": {"f1": 0.9171428571428571, "f1_ci": {"90": [0.888888888888889, 0.9445316700250458], "95": [0.8843537414965987, 0.9478885648316929]}, "precision": 0.9145299145299145, "recall": 0.9197707736389685}, "person": {"f1": 0.9556004036326943, "f1_ci": {"90": [0.949191731901367, 0.9624522822302698], "95": [0.947759511512266, 0.9635008157600174]}, "precision": 0.958502024291498, "recall": 0.9527162977867203}, "product": {"f1": 0.7857142857142858, "f1_ci": {"90": [0.7074746971959516, 0.8571428571428572], "95": [0.6928086318326213, 0.8679526055705302]}, "precision": 0.717391304347826, "recall": 0.868421052631579}, "quantity": {"f1": 0.7945205479452055, "f1_ci": {"90": [0.7301507936507936, 0.8559019931014562], "95": [0.7156685137823244, 0.8688611053468909]}, "precision": 0.7631578947368421, "recall": 0.8285714285714286}, "time": {"f1": 0.6870588235294116, "f1_ci": {"90": [0.6359639016897082, 0.732240357927006], "95": [0.6260340701377503, 0.7433238443393313]}, "precision": 0.6854460093896714, "recall": 0.6886792452830188}, "work_of_art": {"f1": 0.7151515151515151, "f1_ci": {"90": [0.6579761700668609, 0.7656589673913042], "95": [0.6454941116231439, 0.7744146669002161]}, "precision": 0.7195121951219512, "recall": 0.7108433734939759}}}
eval/metric_span.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"micro/f1": 0.9284544931640193, "micro/f1_ci": {"90": [0.9241692474050558, 0.9323166980487259], "95": [0.9234176178451158, 0.933219334035083]}, "micro/recall": 0.9320422848005685, "micro/precision": 0.9248942172073342, "macro/f1": 0.9284544931640193, "macro/f1_ci": {"90": [0.9241692474050558, 0.9323166980487259], "95": [0.9234176178451158, 0.933219334035083]}, "macro/recall": 0.9320422848005685, "macro/precision": 0.9248942172073342}
eval/prediction.validation.json ADDED
The diff for this file is too large to render. See raw diff
 
pytorch_model.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:cc0b233c63b5c85dbcc016f8db4c7606c4dec4de319051f7a21455cde0059c78
3
- size 1417523377
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ede8a820e2f09bc0ace94429dd2196a764fa7913196ff27650aa1194c7086131
3
+ size 1417528817
tokenizer_config.json CHANGED
@@ -6,7 +6,7 @@
6
  "errors": "replace",
7
  "mask_token": "<mask>",
8
  "model_max_length": 512,
9
- "name_or_path": "tner_ckpt/ontonotes5_roberta_large/best_model",
10
  "pad_token": "<pad>",
11
  "sep_token": "</s>",
12
  "special_tokens_map_file": null,
 
6
  "errors": "replace",
7
  "mask_token": "<mask>",
8
  "model_max_length": 512,
9
+ "name_or_path": "tner_ckpt/ontonotes5_roberta_large/model_rcsnba/epoch_5",
10
  "pad_token": "<pad>",
11
  "sep_token": "</s>",
12
  "special_tokens_map_file": null,
trainer_config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"dataset": ["tner/ontonotes5"], "dataset_split": "train", "dataset_name": null, "local_dataset": null, "model": "roberta-large", "crf": true, "max_length": 128, "epoch": 15, "batch_size": 64, "lr": 1e-05, "random_seed": 42, "gradient_accumulation_steps": 1, "weight_decay": null, "lr_warmup_step_ratio": 0.1, "max_grad_norm": 10.0}