--- license: mit datasets: - guanaco/guanaco_clean --- ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6324ce4d5d0cf5c62c6e3c5a/8Z0UpwJzji2G_HVh75uDT.png) # Model Details **Model Name:** thesven/Phi3-mini-128k-guanaco **Base Model:** [microsoft/Phi-3-mini-128k-instruct](https://huggingface.co/microsoft/Phi-3-mini-128k-instruct) **Fine-tuning Method:** Supervised Fine-Tuning (SFT) **Dataset:** [Guanaco Clean](https://huggingface.co/datasets/guanaco/guanaco_clean) **Training Data:** A subset of filtered chats from the Guanaco dataset where the total input length was equal or less than 512 tokens. **Training Duration:** 8 hours **Hardware:** Nvidia RTX A4500 **Epochs:** 3 ## Training Procedure This model was finetuned on chat sequences to improve it's overall chat performance. ### Intended Use This model is designed to improve instruction-following capabilities, particularly for code-related tasks. ## Getting Started ### Instruct Template <|system|> {system_message} <|end|> <|user|> {Prompt) <|end|> <|assistant|> ### Transfromers ```python from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig model_name_or_path = "thesven/Phi3-mini-128k-guanaco" # BitsAndBytesConfig for loading the model in 4-bit precision bnb_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_quant_type="nf4", bnb_4bit_compute_dtype="float16", ) tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True) model = AutoModelForCausalLM.from_pretrained( model_name_or_path, device_map="auto", trust_remote_code=False, revision="main", quantization_config=bnb_config ) model.pad_token = model.config.eos_token_id prompt_template = ''' <|system|> You are an expert developer. Please help me with any coding questions.<|end|> <|user|> Create a function to get the total sum from an array of ints.<|end|> <|assistant|> ''' input_ids = tokenizer(prompt_template, return_tensors='pt').input_ids.cuda() output = model.generate(inputs=input_ids, temperature=0.1, do_sample=True, top_p=0.95, top_k=40, max_new_tokens=256) generated_text = tokenizer.decode(output[0, len(input_ids[0]):], skip_special_tokens=True) print(generated_text) ```