File size: 2,412 Bytes
8f95815
 
 
 
 
 
 
 
 
 
 
4df42ad
 
 
8f95815
 
4df42ad
 
 
8f95815
 
 
 
 
 
4df42ad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8f95815
 
4df42ad
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
---
base_model: unsloth/mistral-7b-v0.3-bnb-4bit
language:
- en
license: apache-2.0
tags:
- text-generation-inference
- transformers
- unsloth
- mistral
- trl
- code
datasets:
- thesven/AetherCode-v1
---


![image/png](https://cdn-uploads.huggingface.co/production/uploads/6324ce4d5d0cf5c62c6e3c5a/NlTeemUNYet9p5963Sfhr.png)

# Uploaded  model

- **Developed by:** thesven
- **License:** apache-2.0
- **Finetuned from model :** unsloth/mistral-7b-v0.3-bnb-4bit

This model is an iteration of the Mistral 7B model, fine-tuned using Supervised Fine-Tuning (SFT) on the AetherCode-v1 dataset specifically for code-related tasks. It combines the advanced capabilities of the base Mistral 7B model with specialized training to enhance its performance in software development contexts.

## Usage
```python
from unsloth import FastLanguageModel

max_seq_length = 2048 # Choose any! We auto support RoPE Scaling internally!
dtype = None # None for auto detection. Float16 for Tesla T4, V100, Bfloat16 for Ampere+
load_in_4bit = True # Use 4bit quantization to reduce memory usage. Can be False.

alpaca_prompt = """Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.

### Instruction:
{}

### Input:
{}

### Response:
{}"""

model, tokenizer = FastLanguageModel.from_pretrained(
    model_name = "thesven/Aether-Code-Mistral-7B-0.3-v1", # YOUR MODEL YOU USED FOR TRAINING
    max_seq_length = max_seq_length,
    dtype = dtype,
    load_in_4bit = load_in_4bit,
)
FastLanguageModel.for_inference(model) # Enable native 2x faster inference

# alpaca_prompt = You MUST copy from above!

inputs = tokenizer(
[
    alpaca_prompt.format(
        "You are an expert python developer, help me with my questions.", # instruction
        "How can I use puppeteer to get a mobile screen shot of a website?", # input
        "", # output - leave this blank for generation!
    ),
], return_tensors = "pt").to("cuda")

outputs = model.generate(**inputs, max_new_tokens = 4000, use_cache = True)
print(tokenizer.batch_decode(outputs))
```


This mistral model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.

[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)