--- language: - en license: mit base_model: roberta-large tags: - generated_from_trainer datasets: - schone-affiliation model-index: - name: final results: [] --- # final This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on the GLUE SCHONE_AFF dataset. It achieves the following results on the evaluation set: - Loss: 0.1011 - Roc Auc: 0.9877 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 128 - eval_batch_size: 256 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Roc Auc | |:-------------:|:------:|:----:|:---------------:|:-------:| | 0.2128 | 0.9985 | 332 | 0.1760 | 0.9613 | | 0.184 | 2.0 | 665 | 0.1493 | 0.9730 | | 0.1592 | 2.9985 | 997 | 0.1257 | 0.9811 | | 0.1464 | 4.0 | 1330 | 0.1069 | 0.9861 | | 0.1236 | 4.9925 | 1660 | 0.1011 | 0.9877 | ### Framework versions - Transformers 4.44.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.20.0 - Tokenizers 0.19.1