--- license: apache-2.0 language: - en tags: - sft pipeline_tag: text-generation widget: - text: You are a helpful assistant model trained by LAION called AkiHi, how are you? - text: What's the Earth total population - text: Write a story about future of AI development --- # Pythia 3B SFT model This modelcard aims to be a base template for new models. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1). # Model Details ## Model Description - **Developed by:** Open Assistant - **Model type:** Pythia - **Language(s) (NLP):** English - **License:** Apache-2.0 ## Model Sources [optional] - **Repository:** [Open Assistant](https://github.com/LAION-AI/Open-Assistant) # Uses ## Direct Use See the example on the right # Bias, Risks, and Limitations [just read pythia](https://huggingface.co/EleutherAI/pythia-12b#out-of-scope-use) ## Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "theblackcat102/pythia-3b-deduped-sft" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name).half().eval().cuda() input_text = "What's the earth population?" inputs = tokenizer(input_text, return_tensors="pt", padding=True).to(0) outputs = model.generate( **inputs, early_stopping=True, max_new_tokens=args.max_new_tokens, do_sample=True, top_k=args.top_k, temperature=args.temperature, pad_token_id=tokenizer.eos_token_id, # dialogue_collator.py line 36 ) output = tokenizer.decode(outputs[0], truncate_before_pattern=[r"\n\n^#", "^'''", "\n\n\n"]) print(output) ``` # Training Details ## Training Data ## Training Procedure ``` deepspeed trainer_sft.py --configs defaults pythia-3b --deepspeed ``` ### Training Hyperparameters ``` defaults: learning_rate: 1e-5 gradient_checkpointing: false gradient_accumulation_steps: 32 per_device_train_batch_size: 2 per_device_eval_batch_size: 2 weight_decay: 0.00 warmup_steps: 600 eval_steps: 250 save_steps: 250 max_length: 512 num_train_epochs: 2 logging_steps: 10 max_grad_norm: 2.0 save_total_limit: 4 fp16: true eval_accumulation_steps: freeze_layer: datasets: - gsm8k_hard - webgpt - squad_v2 - adversarial_qa - private_tuning - oa_translated - prosocial_dialogue - math_qa - wikihow - joke - gsm8k - ted_trans_en-hi - ted_trans_de-ja - ted_trans_nl-en - ted_trans_en-ja - ted_trans_en-es - ted_trans_en-ms - xsum: fraction: 0.5 - cnn_dailymail: fraction: 0.5 - multi_news: fraction: 0.5 - tldr_news: fraction: 0.5 - scitldr: fraction: 0.5 - samsum: fraction: 0.5 - debate_sum: fraction: 0.5 - billsum: fraction: 0.5 - wmt2019_zh-en: fraction: 0.9 - wmt2019_ru-en: fraction: 0.9 - wmt2019_de-en: fraction: 0.9 - wmt2019_fr-de: fraction: 0.9 - essay_instruction - reddit_eli5 - reddit_askh - reddit_asks cache_dir: /fsx/home-theblackcat02/.cache loss_fn: CrossEntropyLoss eval_size: log_dir: "base" quantization: false seq2seqmodel: false poly_eps: 1.0 fuse_gelu: true log_wandb: true samples_mixing: true # uses collator that mixes samples in the batch to create a single sample with possible multiple tasks within verbose: false pythia-3b: learning_rate: 5e-6 model_name: EleutherAI/pythia-2.8b-deduped weight_decay: 0.01 max_length: 520 warmup_steps: 1000 gradient_checkpointing: false gradient_accumulation_steps: 24 per_device_train_batch_size: 6 per_device_eval_batch_size: 6 ``` # Evaluation ## Testing Data, Factors & Metrics ### Testing Data [More Information Needed] ### Factors [More Information Needed] ### Metrics [More Information Needed] ## Results [More Information Needed] ### Summary # Model Examination [optional] [More Information Needed] # Environmental Impact Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] # Technical Specifications [optional] ## Model Architecture and Objective [More Information Needed] ## Compute Infrastructure [More Information Needed] ### Hardware [More Information Needed] ### Software [More Information Needed] # Citation [optional] **BibTeX:** [More Information Needed] **APA:** [More Information Needed] # Glossary [optional] [More Information Needed] # Acknowledgements - [LAION](https://laion.ai/) & EleutherAI - [Stability.ai](https://stability.ai/) : this project wouldn't be possible without their compute resource - [Teams and contributors at Open Assistant](https://github.com/LAION-AI/Open-Assistant/graphs/contributors) : who put their time after their day job or whatever into this project - [Huggingface](https://huggingface.co/) : For the storage and spaces here # Model Card Authors [optional] [More Information Needed] # Model Card Contact [More Information Needed]