Tam Nguyen
commited on
Commit
•
0c4ab0d
1
Parent(s):
0bb3a35
update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,116 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
datasets:
|
6 |
+
- wnut_17
|
7 |
+
metrics:
|
8 |
+
- precision
|
9 |
+
- recall
|
10 |
+
- f1
|
11 |
+
- accuracy
|
12 |
+
model-index:
|
13 |
+
- name: Cybonto-distilbert-base-uncased-finetuned-ner-Wnut17
|
14 |
+
results:
|
15 |
+
- task:
|
16 |
+
name: Token Classification
|
17 |
+
type: token-classification
|
18 |
+
dataset:
|
19 |
+
name: wnut_17
|
20 |
+
type: wnut_17
|
21 |
+
args: wnut_17
|
22 |
+
metrics:
|
23 |
+
- name: Precision
|
24 |
+
type: precision
|
25 |
+
value: 0.6603139013452914
|
26 |
+
- name: Recall
|
27 |
+
type: recall
|
28 |
+
value: 0.4682034976152623
|
29 |
+
- name: F1
|
30 |
+
type: f1
|
31 |
+
value: 0.547906976744186
|
32 |
+
- name: Accuracy
|
33 |
+
type: accuracy
|
34 |
+
value: 0.9355430668654662
|
35 |
+
---
|
36 |
+
|
37 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
38 |
+
should probably proofread and complete it, then remove this comment. -->
|
39 |
+
|
40 |
+
# Cybonto-distilbert-base-uncased-finetuned-ner-Wnut17
|
41 |
+
|
42 |
+
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the wnut_17 dataset.
|
43 |
+
It achieves the following results on the evaluation set:
|
44 |
+
- Loss: 0.5062
|
45 |
+
- Precision: 0.6603
|
46 |
+
- Recall: 0.4682
|
47 |
+
- F1: 0.5479
|
48 |
+
- Accuracy: 0.9355
|
49 |
+
|
50 |
+
## Model description
|
51 |
+
|
52 |
+
More information needed
|
53 |
+
|
54 |
+
## Intended uses & limitations
|
55 |
+
|
56 |
+
More information needed
|
57 |
+
|
58 |
+
## Training and evaluation data
|
59 |
+
|
60 |
+
More information needed
|
61 |
+
|
62 |
+
## Training procedure
|
63 |
+
|
64 |
+
### Training hyperparameters
|
65 |
+
|
66 |
+
The following hyperparameters were used during training:
|
67 |
+
- learning_rate: 2e-05
|
68 |
+
- train_batch_size: 32
|
69 |
+
- eval_batch_size: 32
|
70 |
+
- seed: 42
|
71 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
72 |
+
- lr_scheduler_type: linear
|
73 |
+
- num_epochs: 30
|
74 |
+
|
75 |
+
### Training results
|
76 |
+
|
77 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
78 |
+
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
79 |
+
| No log | 1.0 | 107 | 0.3396 | 0.6470 | 0.4269 | 0.5144 | 0.9330 |
|
80 |
+
| No log | 2.0 | 214 | 0.3475 | 0.5948 | 0.4539 | 0.5149 | 0.9335 |
|
81 |
+
| No log | 3.0 | 321 | 0.3793 | 0.6613 | 0.4253 | 0.5177 | 0.9332 |
|
82 |
+
| No log | 4.0 | 428 | 0.3598 | 0.6195 | 0.4944 | 0.5500 | 0.9354 |
|
83 |
+
| 0.0409 | 5.0 | 535 | 0.3702 | 0.5802 | 0.4571 | 0.5113 | 0.9308 |
|
84 |
+
| 0.0409 | 6.0 | 642 | 0.4192 | 0.6546 | 0.4459 | 0.5305 | 0.9344 |
|
85 |
+
| 0.0409 | 7.0 | 749 | 0.4039 | 0.6360 | 0.4610 | 0.5346 | 0.9354 |
|
86 |
+
| 0.0409 | 8.0 | 856 | 0.4104 | 0.6564 | 0.4587 | 0.5400 | 0.9353 |
|
87 |
+
| 0.0409 | 9.0 | 963 | 0.3839 | 0.6283 | 0.4944 | 0.5534 | 0.9361 |
|
88 |
+
| 0.0132 | 10.0 | 1070 | 0.4331 | 0.6197 | 0.4547 | 0.5245 | 0.9339 |
|
89 |
+
| 0.0132 | 11.0 | 1177 | 0.4152 | 0.6196 | 0.4817 | 0.5420 | 0.9355 |
|
90 |
+
| 0.0132 | 12.0 | 1284 | 0.4654 | 0.6923 | 0.4507 | 0.5460 | 0.9353 |
|
91 |
+
| 0.0132 | 13.0 | 1391 | 0.4869 | 0.6739 | 0.4436 | 0.5350 | 0.9350 |
|
92 |
+
| 0.0132 | 14.0 | 1498 | 0.4297 | 0.6424 | 0.4769 | 0.5474 | 0.9353 |
|
93 |
+
| 0.0061 | 15.0 | 1605 | 0.4507 | 0.6272 | 0.4626 | 0.5325 | 0.9340 |
|
94 |
+
| 0.0061 | 16.0 | 1712 | 0.4410 | 0.6066 | 0.4793 | 0.5355 | 0.9335 |
|
95 |
+
| 0.0061 | 17.0 | 1819 | 0.4851 | 0.6639 | 0.4523 | 0.5381 | 0.9351 |
|
96 |
+
| 0.0061 | 18.0 | 1926 | 0.4815 | 0.6553 | 0.4563 | 0.5380 | 0.9346 |
|
97 |
+
| 0.0035 | 19.0 | 2033 | 0.5188 | 0.6780 | 0.4420 | 0.5351 | 0.9350 |
|
98 |
+
| 0.0035 | 20.0 | 2140 | 0.4986 | 0.6770 | 0.4698 | 0.5547 | 0.9363 |
|
99 |
+
| 0.0035 | 21.0 | 2247 | 0.4834 | 0.6552 | 0.4714 | 0.5483 | 0.9355 |
|
100 |
+
| 0.0035 | 22.0 | 2354 | 0.5094 | 0.6784 | 0.4595 | 0.5479 | 0.9358 |
|
101 |
+
| 0.0035 | 23.0 | 2461 | 0.4954 | 0.6583 | 0.4579 | 0.5401 | 0.9354 |
|
102 |
+
| 0.0026 | 24.0 | 2568 | 0.5035 | 0.6667 | 0.4595 | 0.5440 | 0.9354 |
|
103 |
+
| 0.0026 | 25.0 | 2675 | 0.5000 | 0.6599 | 0.4658 | 0.5461 | 0.9355 |
|
104 |
+
| 0.0026 | 26.0 | 2782 | 0.4968 | 0.6697 | 0.4738 | 0.5549 | 0.9357 |
|
105 |
+
| 0.0026 | 27.0 | 2889 | 0.4991 | 0.6545 | 0.4714 | 0.5481 | 0.9352 |
|
106 |
+
| 0.0026 | 28.0 | 2996 | 0.4936 | 0.6508 | 0.4769 | 0.5505 | 0.9353 |
|
107 |
+
| 0.0021 | 29.0 | 3103 | 0.5005 | 0.6535 | 0.4722 | 0.5482 | 0.9353 |
|
108 |
+
| 0.0021 | 30.0 | 3210 | 0.5062 | 0.6603 | 0.4682 | 0.5479 | 0.9355 |
|
109 |
+
|
110 |
+
|
111 |
+
### Framework versions
|
112 |
+
|
113 |
+
- Transformers 4.18.0
|
114 |
+
- Pytorch 1.10.0+cu111
|
115 |
+
- Datasets 2.1.0
|
116 |
+
- Tokenizers 0.12.1
|