File size: 6,768 Bytes
8f5a2ad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
from transformers import Wav2Vec2PreTrainedModel, Wav2Vec2Model
from torch import nn
import warnings
import torch
from transformers.modeling_outputs import CausalLMOutput
from collections import OrderedDict

_HIDDEN_STATES_START_POSITION = 2


class Wav2Vec2ForCTC(Wav2Vec2PreTrainedModel):
    def __init__(self, config):
        super().__init__(config)

        self.wav2vec2 = Wav2Vec2Model(config)
        self.dropout = nn.Dropout(config.final_dropout)

        self.feature_transform = nn.Sequential(OrderedDict([
            ('linear1', nn.Linear(config.hidden_size, config.hidden_size)),
            ('bn1', nn.BatchNorm1d(config.hidden_size)),
            ('activation1', nn.LeakyReLU()),
            ('drop1', nn.Dropout(config.final_dropout)),
            ('linear2', nn.Linear(config.hidden_size, config.hidden_size)),
            ('bn2', nn.BatchNorm1d(config.hidden_size)),
            ('activation2', nn.LeakyReLU()),
            ('drop2', nn.Dropout(config.final_dropout)),
            ('linear3', nn.Linear(config.hidden_size, config.hidden_size)),
            ('bn3', nn.BatchNorm1d(config.hidden_size)),
            ('activation3', nn.LeakyReLU()),
            ('drop3', nn.Dropout(config.final_dropout))
        ]))

        if config.vocab_size is None:
            raise ValueError(
                f"You are trying to instantiate {self.__class__} with a configuration that "
                "does not define the vocabulary size of the language model head. Please "
                "instantiate the model as follows: `Wav2Vec2ForCTC.from_pretrained(..., vocab_size=vocab_size)`. "
                "or define `vocab_size` of your model's configuration."
            )
        self.lm_head = nn.Linear(config.hidden_size, config.vocab_size)

        self.is_wav2vec_freeze = False

        # Initialize weights and apply final processing
        self.post_init()

    def freeze_feature_extractor(self):
        """
        Calling this function will disable the gradient computation for the feature encoder so that its parameter will
        not be updated during training.
        """
        warnings.warn(
            "The method `freeze_feature_extractor` is deprecated and will be removed in Transformers v5."
            "Please use the equivalent `freeze_feature_encoder` method instead.",
            FutureWarning,
        )
        self.freeze_feature_encoder()

    def freeze_feature_encoder(self):
        """
        Calling this function will disable the gradient computation for the feature encoder so that its parameter will
        not be updated during training.
        """
        self.wav2vec2.feature_extractor._freeze_parameters()

    def freeze_wav2vec(self, is_freeze=True):
        """
        Calling this function will disable the gradient computation for the feature extractor so that its parameter
        will not be updated during training.
        """
        if is_freeze:
            self.is_wav2vec_freeze = True
            for param in self.wav2vec2.parameters():
                param.requires_grad = False
        else:
            self.is_wav2vec_freeze = False
            for param in self.wav2vec2.parameters():
                param.requires_grad = True
        self.freeze_feature_encoder()

        model_total_params = sum(p.numel() for p in self.parameters())
        model_total_params_trainable = sum(p.numel() for p in self.parameters() if p.requires_grad)
        print("model_total_params: {}\nmodel_total_params_trainable: {}".format(model_total_params,
                                                                                model_total_params_trainable))

    def forward(
            self,
            input_values,
            attention_mask=None,
            output_attentions=None,
            output_hidden_states=None,
            return_dict=None,
            labels=None,
    ):
        r"""
        labels (`torch.LongTensor` of shape `(batch_size, target_length)`, *optional*):
            Labels for connectionist temporal classification. Note that `target_length` has to be smaller or equal to
            the sequence length of the output logits. Indices are selected in `[-100, 0, ..., config.vocab_size - 1]`.
            All labels set to `-100` are ignored (masked), the loss is only computed for labels in `[0, ...,
            config.vocab_size - 1]`.
        """

        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        outputs = self.wav2vec2(
            input_values,
            attention_mask=attention_mask,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        hidden_states = outputs[0]
        hidden_states = self.dropout(hidden_states)

        B, T, F = hidden_states.size()
        hidden_states = hidden_states.view(B * T, F)

        hidden_states = self.feature_transform(hidden_states)

        hidden_states = hidden_states.view(B, T, F)

        logits = self.lm_head(hidden_states)

        loss = None
        if labels is not None:

            if labels.max() >= self.config.vocab_size:
                raise ValueError(f"Label values must be <= vocab_size: {self.config.vocab_size}")

            # retrieve loss input_lengths from attention_mask
            attention_mask = (
                attention_mask if attention_mask is not None else torch.ones_like(input_values, dtype=torch.long)
            )
            input_lengths = self._get_feat_extract_output_lengths(attention_mask.sum(-1)).to(torch.long)

            # assuming that padded tokens are filled with -100
            # when not being attended to
            labels_mask = labels >= 0
            target_lengths = labels_mask.sum(-1)
            flattened_targets = labels.masked_select(labels_mask)

            # ctc_loss doesn't support fp16
            log_probs = nn.functional.log_softmax(logits, dim=-1, dtype=torch.float32).transpose(0, 1)

            with torch.backends.cudnn.flags(enabled=False):
                loss = nn.functional.ctc_loss(
                    log_probs,
                    flattened_targets,
                    input_lengths,
                    target_lengths,
                    blank=self.config.pad_token_id,
                    reduction=self.config.ctc_loss_reduction,
                    zero_infinity=self.config.ctc_zero_infinity,
                )

        if not return_dict:
            output = (logits,) + outputs[_HIDDEN_STATES_START_POSITION:]
            return ((loss,) + output) if loss is not None else output

        return CausalLMOutput(
            loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions
        )