File size: 3,243 Bytes
36fff89
 
 
 
9c7b8dd
36fff89
9c7b8dd
 
36fff89
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
---
language:
- en
- ko
license: llama3
library_name: transformers
datasets:
- legacy-datasets/wikipedia
pipeline_tag: text-generation
---
## Model Details

This model was continually pretrained from the [Meta-Llama-3-8B](https://huggingface.co/meta-llama/Meta-Llama-3-8B), using English and Korean datasets.
The goal is to enhance its proficiency in Korean while maintaining its English language capabilities from the original model.

### Datasets

We sampled 16B tokens from the following datasets for training:

<table>
  <tr>
   <td><strong>Sources</strong>
   </td>
   <td><strong>Tokens (Llama-3-8B)</strong>
   </td>
  </tr>
  <tr>
   <td>AI-Hub
   </td>
   <td>9.2B
   </td>
  </tr>
  <tr>
   <td>Modu Corpus
   </td>
   <td>5.8B
   </td>
  </tr>
  <tr>
   <td>Wikipedia
   </td>
   <td>5.4B
   </td>
  </tr>
</table>

### Hyperparameters

<table>
  <tr>
   <td><strong>Learning rate</strong></td>
   <td><strong>Optimizer</strong></td>
   <td><strong>Betas</strong></td>
   <td><strong>Weight decay</strong></td>
   <td><strong>Warm-up ratio</strong></td>
  </tr>
  <tr>
   <td>3e-5</td>
   <td>AdamW</td>
   <td>(0.9, 0.95)</td>
   <td>0.1</td>
   <td>0.05</td>
  </tr>
</table>

## Intended Use

This model has not been fine-tuned, so you will need to train it on your own dataset before using it.

## Evaluations

We evaluated this model using both English and Korean benchmarks, and compared it with similar models that were continually pretrained from the [Meta-Llama-3-8B](https://huggingface.co/meta-llama/Meta-Llama-3-8B).

<table>
  <tr>
   <td></td>
   <td colspan="4"><strong>English</strong></td>
   <td colspan="3"><strong>Korean</strong></td>
  </tr>
  <tr>
   <td><strong>Model</strong></td>
   <td><strong>MMLU (5 shots)</strong></td>
   <td><strong>HellaSwag (10 shots)</strong></td>
   <td><strong>GSM8K (8 shots, CoT)</strong></td>
   <td><strong>BBH (3 shots, CoT)</strong></td>
   <td><strong>KMMLU (5 shots)</strong></td>
   <td><strong>HAE-RAE (5 shots)</strong></td>
   <td><strong>KoBEST (5 shots)</strong></td>
  </tr>
  <tr>
   <td>meta-llama/Meta-Llama-3-8B</td>
   <td><strong>65.1</strong></td>
   <td><strong>82.1</strong></td>
   <td><strong>52.0</strong></td>
   <td><strong>61.9</strong></td>
   <td>40.2</td>
   <td>61.1</td> 
   <td>69.2</td>  
  </tr>
  <tr>
   <td>saltlux/Ko-Llama3-Luxia-8B</td>
   <td>57.1</td>
   <td>77.1</td>
   <td>32.3</td>
   <td>51.8</td>
   <td>39.4</td>
   <td>69.2</td> 
   <td>71.9</td>  
  </tr>
  <tr>
   <td>beomi/Llama-3-Open-Ko-8B</td>
   <td>56.2</td>
   <td>77.4</td>
   <td>31.5</td>
   <td>46.8</td>
   <td>40.3</td>
   <td>68.1</td> 
   <td><u>72.1</u></td>  
  </tr>
  <tr>
   <td>beomi/Llama-3-KoEn-8B</td>
   <td>52.5</td>
   <td>77.7</td>
   <td>21.2</td>
   <td>43.2</td>
   <td><u>40.8</u></td>
   <td><u>71.3</u></td> 
   <td><strong>73.8</strong></td>  
  </tr>
  <tr>
   <td><strong>tesser/Tesser-Llama-3-Ko-8B</strong></td>
   <td><u>60.5</u></td>
   <td><u>79.8</u></td>
   <td><u>40.3</u></td>
   <td><u>56.3</u></td>
   <td><strong>42.5</strong></td>
   <td><strong>72.1</strong></td> 
   <td><strong>73.8</strong></td>  
  </tr>
</table>


## License

This model follows the original [Llama-3 license](https://llama.meta.com/llama3/license/).