File size: 2,249 Bytes
eef976f 62019fa eef976f 62019fa eef976f 62019fa eef976f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 |
---
license: apache-2.0
base_model: bert-base-uncased
tags:
- generated_from_trainer
datasets:
- wikitext
model-index:
- name: run_opt
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# run_opt
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the wikitext dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0165
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 512
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 8.562 | 0.55 | 50 | 6.9697 |
| 6.63 | 1.1 | 100 | 6.3436 |
| 5.938 | 1.65 | 150 | 5.1110 |
| 3.0597 | 2.19 | 200 | 1.4150 |
| 0.7989 | 2.74 | 250 | 0.3477 |
| 0.2227 | 3.29 | 300 | 0.1284 |
| 0.0925 | 3.84 | 350 | 0.0640 |
| 0.0475 | 4.39 | 400 | 0.0412 |
| 0.0314 | 4.94 | 450 | 0.0304 |
| 0.0217 | 5.49 | 500 | 0.0246 |
| 0.0181 | 6.04 | 550 | 0.0215 |
| 0.0146 | 6.58 | 600 | 0.0194 |
| 0.0132 | 7.13 | 650 | 0.0182 |
| 0.012 | 7.68 | 700 | 0.0174 |
| 0.0114 | 8.23 | 750 | 0.0169 |
| 0.011 | 8.78 | 800 | 0.0167 |
| 0.0108 | 9.33 | 850 | 0.0166 |
| 0.0106 | 9.88 | 900 | 0.0165 |
### Framework versions
- Transformers 4.33.1
- Pytorch 1.12.1
- Datasets 2.14.6
- Tokenizers 0.13.3
|