|
Logging training |
|
Running DummyClassifier() |
|
accuracy: 0.788 average_precision: 0.212 roc_auc: 0.500 recall_macro: 0.500 f1_macro: 0.441 |
|
=== new best DummyClassifier() (using recall_macro): |
|
accuracy: 0.788 average_precision: 0.212 roc_auc: 0.500 recall_macro: 0.500 f1_macro: 0.441 |
|
|
|
Running GaussianNB() |
|
accuracy: 0.688 average_precision: 0.405 roc_auc: 0.802 recall_macro: 0.802 f1_macro: 0.665 |
|
=== new best GaussianNB() (using recall_macro): |
|
accuracy: 0.688 average_precision: 0.405 roc_auc: 0.802 recall_macro: 0.802 f1_macro: 0.665 |
|
|
|
Running MultinomialNB() |
|
accuracy: 0.978 average_precision: 0.990 roc_auc: 0.997 recall_macro: 0.967 f1_macro: 0.967 |
|
=== new best MultinomialNB() (using recall_macro): |
|
accuracy: 0.978 average_precision: 0.990 roc_auc: 0.997 recall_macro: 0.967 f1_macro: 0.967 |
|
|
|
Running DecisionTreeClassifier(class_weight='balanced', max_depth=1) |
|
accuracy: 1.000 average_precision: 1.000 roc_auc: 1.000 recall_macro: 1.000 f1_macro: 1.000 |
|
=== new best DecisionTreeClassifier(class_weight='balanced', max_depth=1) (using recall_macro): |
|
accuracy: 1.000 average_precision: 1.000 roc_auc: 1.000 recall_macro: 1.000 f1_macro: 1.000 |
|
|
|
Running DecisionTreeClassifier(class_weight='balanced', max_depth=5) |
|
accuracy: 1.000 average_precision: 1.000 roc_auc: 1.000 recall_macro: 1.000 f1_macro: 1.000 |
|
Running DecisionTreeClassifier(class_weight='balanced', min_impurity_decrease=0.01) |
|
accuracy: 1.000 average_precision: 1.000 roc_auc: 1.000 recall_macro: 1.000 f1_macro: 1.000 |
|
Running LogisticRegression(C=0.1, class_weight='balanced', max_iter=1000) |
|
accuracy: 0.999 average_precision: 1.000 roc_auc: 0.000 recall_macro: 0.999 f1_macro: 0.999 |
|
Running LogisticRegression(class_weight='balanced', max_iter=1000) |
|
accuracy: 1.000 average_precision: 1.000 roc_auc: 0.000 recall_macro: 1.000 f1_macro: 1.000 |
|
|
|
Best model: |
|
DecisionTreeClassifier(class_weight='balanced', max_depth=1) |
|
Best Scores: |
|
accuracy: 1.000 average_precision: 1.000 roc_auc: 1.000 recall_macro: 1.000 f1_macro: 1.000 |
|
|