--- license: mit language: - ja pipeline_tag: image-to-text --- # Steganography Neural Network Model Card ## Model Overview **Task:** Image Steganography (Message Embedding and Extraction) **Architecture Type:** Encoder-Decoder Neural Network **Primary Use Case:** Embedding and recovering hidden messages in images ## Technical Specifications - **Parameters:** 980,548 - **Model Size:** 3.74 MB - **Precision:** torch.float32 - **FLOPs:** 1,954,176 - **Input Resolution:** 512 × 512 pixels - **Framework:** PyTorch ## Architecture Details ### Encoder Network - **Input:** 4 channels (RGB + message), 512×512px - **Output:** 3 channels (RGB stego image), 512×512px - **Key Components:** - Initial Conv (4→64 channels) - Backbone with SE blocks and dilated convolutions - Residual connections - Final weighted combination (0.9 × original + 0.1 × encoded) ### Decoder Network - **Input:** 3 channels (stego image), 512×512px - **Output:** 1 channel (recovered message), 512×512px - **Key Components:** - Feature extraction (3→64→128 channels) - SE blocks and residual connections - Message extraction pathway ## Training Details - **Hardware:** GTX 1080 GPU - **Epochs:** 600 - **Optimizer:** AdamW (lr=0.001, weight_decay=0.01) - **Scheduler:** Cosine Annealing (min_lr=1e-6) - **Loss Functions:** - Image Loss: 0.95×MSE + 0.05×(1-SSIM) - Message Loss: MSE - Combined with dynamic alpha weighting ## Key Features - Group Normalization for batch-size independence - SiLU activation functions throughout - Squeeze-and-Excitation blocks for channel attention - Dilated convolutions in encoder - Skip connections for detail preservation ## Performance Characteristics - Maintains visual image quality while embedding messages - Optimized for both image fidelity and message recovery - Lightweight architecture (<1M parameters) ## Limitations and Biases - Fixed input resolution of 512×512 pixels ## Technical Requirements - PyTorch environment - GPU recommended for optimal performance - Standard deep learning dependencies - Sufficient memory for 3.74 MB model ## Citation and Contact - Model source and citation information not provided - Contact information for maintainers not specified