--- license: apache-2.0 library_name: peft tags: - generated_from_trainer base_model: distilbert-base-uncased datasets: - pubmed-summarization model-index: - name: distilbert-base-uncased-finetuned-pubmed-lora-trained-tabbas97 results: [] --- # distilbert-base-uncased-finetuned-pubmed-lora-trained-tabbas97 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the pubmed-summarization dataset. It achieves the following results on the evaluation set: - Loss: 1.9949 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.2258 | 0.8 | 500 | 2.0382 | | 2.1769 | 1.6 | 1000 | 1.9865 | | 2.1476 | 2.4 | 1500 | 2.0094 | | 2.146 | 3.2 | 2000 | 2.0005 | | 2.1429 | 4.0 | 2500 | 1.9993 | ### Framework versions - PEFT 0.11.1 - Transformers 4.40.2 - Pytorch 2.2.1+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1