dipteshkanojia commited on
Commit
f0c3082
1 Parent(s): 0ec2ade

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +44 -2
README.md CHANGED
@@ -2,9 +2,36 @@
2
  license: mit
3
  tags:
4
  - generated_from_trainer
 
 
 
 
 
 
 
5
  model-index:
6
  - name: roberta-base-finetuned-ner
7
- results: []
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8
  ---
9
 
10
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -12,7 +39,13 @@ should probably proofread and complete it, then remove this comment. -->
12
 
13
  # roberta-base-finetuned-ner
14
 
15
- This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset.
 
 
 
 
 
 
16
 
17
  ## Model description
18
 
@@ -39,6 +72,15 @@ The following hyperparameters were used during training:
39
  - lr_scheduler_type: linear
40
  - num_epochs: 6
41
 
 
 
 
 
 
 
 
 
 
42
  ### Framework versions
43
 
44
  - Transformers 4.18.0
 
2
  license: mit
3
  tags:
4
  - generated_from_trainer
5
+ datasets:
6
+ - plo_dfiltered_config
7
+ metrics:
8
+ - precision
9
+ - recall
10
+ - f1
11
+ - accuracy
12
  model-index:
13
  - name: roberta-base-finetuned-ner
14
+ results:
15
+ - task:
16
+ name: Token Classification
17
+ type: token-classification
18
+ dataset:
19
+ name: plo_dfiltered_config
20
+ type: plo_dfiltered_config
21
+ args: PLODfiltered
22
+ metrics:
23
+ - name: Precision
24
+ type: precision
25
+ value: 0.9644756447594547
26
+ - name: Recall
27
+ type: recall
28
+ value: 0.9583209148378798
29
+ - name: F1
30
+ type: f1
31
+ value: 0.9613884293804785
32
+ - name: Accuracy
33
+ type: accuracy
34
+ value: 0.9575894768204436
35
  ---
36
 
37
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
39
 
40
  # roberta-base-finetuned-ner
41
 
42
+ This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the plo_dfiltered_config dataset.
43
+ It achieves the following results on the evaluation set:
44
+ - Loss: 0.1148
45
+ - Precision: 0.9645
46
+ - Recall: 0.9583
47
+ - F1: 0.9614
48
+ - Accuracy: 0.9576
49
 
50
  ## Model description
51
 
 
72
  - lr_scheduler_type: linear
73
  - num_epochs: 6
74
 
75
+ ### Training results
76
+
77
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
78
+ |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
79
+ | 0.1179 | 1.99 | 7000 | 0.1130 | 0.9602 | 0.9517 | 0.9559 | 0.9522 |
80
+ | 0.0878 | 3.98 | 14000 | 0.1106 | 0.9647 | 0.9564 | 0.9606 | 0.9567 |
81
+ | 0.0724 | 5.96 | 21000 | 0.1149 | 0.9646 | 0.9582 | 0.9614 | 0.9576 |
82
+
83
+
84
  ### Framework versions
85
 
86
  - Transformers 4.18.0