init
Browse files- README.md +20 -1
- config.json +34 -0
- configuration_gptpangu.py +51 -0
- modeling_gptpangu.py +549 -0
- pytorch_model.bin +3 -0
- tokenization_gptpangu.py +125 -0
- tokenizer_config.json +16 -0
- vocab.model +3 -0
README.md
CHANGED
@@ -1,3 +1,22 @@
|
|
1 |
---
|
2 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
|
|
1 |
---
|
2 |
+
language:
|
3 |
+
- zh
|
4 |
+
tags:
|
5 |
+
- pangu
|
6 |
+
- chatgpt
|
7 |
+
---
|
8 |
+
|
9 |
+
Link to github: [here](https://github.com/sunzeyeah/RLHF)
|
10 |
+
|
11 |
+
---
|
12 |
+
|
13 |
+
|
14 |
+
# Model Description
|
15 |
+
|
16 |
+
Pangu-α is proposed by a joint technical team headed by PCNL. It was first released in [this repository](https://git.openi.org.cn/PCL-Platform.Intelligence/PanGu-Alpha) It is the first large-scale Chinese pre-trained language model with 200 billion parameters trained on 2048 Ascend processors using an automatic hybrid parallel training strategy. The whole training process is done on the “Peng Cheng Cloud Brain II” computing platform with the domestic deep learning framework called MindSpore. The PengCheng·PanGu-α pre-training model can support rich applications, has strong few-shot learning capabilities, and has outstanding performance in text generation tasks such as knowledge question and answer, knowledge retrieval, knowledge reasoning, and reading comprehension.
|
17 |
+
|
18 |
+
This repository contains PyTorch implementation of PanGu model with 2.6 billion parameters pretrained weights (FP32 precision).
|
19 |
+
|
20 |
+
It is slightly different from the [original pangu implementation](https://huggingface.co/imone/pangu_2_6B) to support the ChatGPT training pipeline in this github repo: [sunzeyeah/RLHF](https://github.com/sunzeyeah/RLHF).
|
21 |
+
|
22 |
---
|
config.json
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"activation_function": "gelu",
|
3 |
+
"architectures": [
|
4 |
+
"GPTPanguForCausalLM"
|
5 |
+
],
|
6 |
+
"attn_pdrop": 0.1,
|
7 |
+
"embd_pdrop": 0.1,
|
8 |
+
"hidden_size": 2560,
|
9 |
+
"initializer_range": 0.02,
|
10 |
+
"intermediate_size": null,
|
11 |
+
"layer_norm_epsilon": 1e-05,
|
12 |
+
"max_position_embeddings": 1024,
|
13 |
+
"model_type": "gpt_pangu",
|
14 |
+
"num_heads": 32,
|
15 |
+
"num_layers": 32,
|
16 |
+
"resid_pdrop": 0.1,
|
17 |
+
"scale_attn_weights": true,
|
18 |
+
"summary_activation": null,
|
19 |
+
"summary_first_dropout": 0.1,
|
20 |
+
"summary_proj_to_labels": true,
|
21 |
+
"summary_type": "cls_index",
|
22 |
+
"summary_use_proj": true,
|
23 |
+
"torch_dtype": "float32",
|
24 |
+
"transformers_version": "4.13.0",
|
25 |
+
"use_cache": true,
|
26 |
+
"vocab_size": 40000,
|
27 |
+
"tokenizer_class": "GPTPanguTokenizer",
|
28 |
+
"auto_map": {
|
29 |
+
"AutoConfig": "configuration_gptpangu.GPTPanguConfig",
|
30 |
+
"AutoTokenizer": ["tokenization_gptpangu.GPTPanguTokenizer", null],
|
31 |
+
"AutoModelForCausalLM": "modeling_gptpangu.GPTPanguForCausalLM"
|
32 |
+
},
|
33 |
+
"pad_token_id": 6
|
34 |
+
}
|
configuration_gptpangu.py
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers.configuration_utils import PretrainedConfig
|
2 |
+
|
3 |
+
|
4 |
+
class GPTPanguConfig(PretrainedConfig):
|
5 |
+
model_type = "gpt_pangu"
|
6 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
7 |
+
|
8 |
+
def __init__(
|
9 |
+
self,
|
10 |
+
vocab_size=40000,
|
11 |
+
max_position_embeddings=1024,
|
12 |
+
hidden_size=2560,
|
13 |
+
intermediate_size=None,
|
14 |
+
num_layers=32,
|
15 |
+
num_heads=32,
|
16 |
+
activation_function="gelu",
|
17 |
+
resid_pdrop=0.1,
|
18 |
+
embd_pdrop=0.1,
|
19 |
+
attn_pdrop=0.1,
|
20 |
+
layer_norm_epsilon=1e-5,
|
21 |
+
scale_attn_weights=True,
|
22 |
+
initializer_range=0.02,
|
23 |
+
summary_type="cls_index",
|
24 |
+
summary_use_proj=True,
|
25 |
+
summary_activation=None,
|
26 |
+
summary_proj_to_labels=True,
|
27 |
+
summary_first_dropout=0.1,
|
28 |
+
use_cache=True,
|
29 |
+
**kwargs,
|
30 |
+
):
|
31 |
+
self.vocab_size = vocab_size
|
32 |
+
self.max_position_embeddings = max_position_embeddings
|
33 |
+
self.hidden_size = hidden_size
|
34 |
+
self.intermediate_size = intermediate_size
|
35 |
+
self.num_layers = num_layers
|
36 |
+
self.num_heads = num_heads
|
37 |
+
self.activation_function = activation_function
|
38 |
+
self.resid_pdrop = resid_pdrop
|
39 |
+
self.embd_pdrop = embd_pdrop
|
40 |
+
self.attn_pdrop = attn_pdrop
|
41 |
+
self.layer_norm_epsilon = layer_norm_epsilon
|
42 |
+
self.scale_attn_weights = scale_attn_weights
|
43 |
+
self.initializer_range = initializer_range
|
44 |
+
self.summary_type = summary_type
|
45 |
+
self.summary_use_proj = summary_use_proj
|
46 |
+
self.summary_activation = summary_activation
|
47 |
+
self.summary_first_dropout = summary_first_dropout
|
48 |
+
self.summary_proj_to_labels = summary_proj_to_labels
|
49 |
+
self.use_cache = use_cache
|
50 |
+
|
51 |
+
super().__init__(**kwargs)
|
modeling_gptpangu.py
ADDED
@@ -0,0 +1,549 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""PyTorch PanguAlpha GPT2 Model"""
|
2 |
+
# from .configuration_gptpangu import GPTPanguConfig
|
3 |
+
|
4 |
+
from typing import Tuple
|
5 |
+
import math
|
6 |
+
|
7 |
+
import torch
|
8 |
+
from torch import nn
|
9 |
+
|
10 |
+
from transformers.activations import ACT2FN
|
11 |
+
from transformers.modeling_utils import PreTrainedModel
|
12 |
+
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
|
13 |
+
|
14 |
+
from transformers.utils import logging
|
15 |
+
|
16 |
+
logger = logging.get_logger(__name__)
|
17 |
+
|
18 |
+
|
19 |
+
class GPTPanguAttention(nn.Module):
|
20 |
+
def __init__(self, config):
|
21 |
+
super().__init__()
|
22 |
+
|
23 |
+
max_positions = config.max_position_embeddings
|
24 |
+
self.register_buffer(
|
25 |
+
"bias",
|
26 |
+
torch.tril(torch.ones((max_positions, max_positions), dtype=torch.uint8)).view(
|
27 |
+
1, 1, max_positions, max_positions
|
28 |
+
),
|
29 |
+
)
|
30 |
+
self.register_buffer("masked_bias", torch.tensor(-1e4))
|
31 |
+
|
32 |
+
self.embed_dim = config.hidden_size
|
33 |
+
self.num_heads = config.num_heads
|
34 |
+
self.head_dim = self.embed_dim // self.num_heads
|
35 |
+
if self.head_dim * self.num_heads != self.embed_dim:
|
36 |
+
raise ValueError(
|
37 |
+
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`: {self.num_heads})."
|
38 |
+
)
|
39 |
+
|
40 |
+
self.scale_attn_weights = config.scale_attn_weights
|
41 |
+
|
42 |
+
self.k_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=True)
|
43 |
+
self.v_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=True)
|
44 |
+
self.q_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=True)
|
45 |
+
self.c_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=True)
|
46 |
+
|
47 |
+
self.attn_dropout = nn.Dropout(config.attn_pdrop)
|
48 |
+
self.resid_dropout = nn.Dropout(config.resid_pdrop)
|
49 |
+
|
50 |
+
|
51 |
+
def _attn(self, query, key, value, attention_mask=None, head_mask=None):
|
52 |
+
attn_weights = torch.matmul(query, key.transpose(-1, -2))
|
53 |
+
|
54 |
+
if self.scale_attn_weights:
|
55 |
+
attn_weights = attn_weights / (float(value.size(-1)) ** 0.5)
|
56 |
+
|
57 |
+
query_length, key_length = query.size(-2), key.size(-2)
|
58 |
+
causal_mask = self.bias[:, :, key_length - query_length : key_length, :key_length].bool()
|
59 |
+
attn_weights = torch.where(causal_mask, attn_weights, self.masked_bias.to(attn_weights.dtype))
|
60 |
+
|
61 |
+
if attention_mask is not None:
|
62 |
+
# Apply the attention mask
|
63 |
+
attn_weights = attn_weights + attention_mask
|
64 |
+
|
65 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
|
66 |
+
|
67 |
+
# Downcast (if necessary) back to V's dtype (if in mixed-precision) -- No-Op otherwise
|
68 |
+
attn_weights = attn_weights.type(value.dtype)
|
69 |
+
attn_weights = self.attn_dropout(attn_weights)
|
70 |
+
|
71 |
+
# Mask heads if we want to
|
72 |
+
if head_mask is not None:
|
73 |
+
attn_weights = attn_weights * head_mask
|
74 |
+
|
75 |
+
attn_output = torch.matmul(attn_weights, value)
|
76 |
+
|
77 |
+
return attn_output, attn_weights
|
78 |
+
|
79 |
+
def _split_heads(self, tensor, num_heads, attn_head_size):
|
80 |
+
"""
|
81 |
+
Splits hidden_size dim into attn_head_size and num_heads
|
82 |
+
"""
|
83 |
+
new_shape = tensor.size()[:-1] + (num_heads, attn_head_size)
|
84 |
+
tensor = tensor.view(*new_shape)
|
85 |
+
return tensor.permute(0, 2, 1, 3) # (batch, head, seq_length, head_features)
|
86 |
+
|
87 |
+
def _merge_heads(self, tensor, num_heads, attn_head_size):
|
88 |
+
"""
|
89 |
+
Merges attn_head_size dim and num_attn_heads dim into hidden_size
|
90 |
+
"""
|
91 |
+
tensor = tensor.permute(0, 2, 1, 3).contiguous()
|
92 |
+
new_shape = tensor.size()[:-2] + (num_heads * attn_head_size,)
|
93 |
+
return tensor.view(new_shape)
|
94 |
+
|
95 |
+
def forward(
|
96 |
+
self,
|
97 |
+
hidden_states,
|
98 |
+
layer_past=None,
|
99 |
+
attention_mask=None,
|
100 |
+
head_mask=None,
|
101 |
+
custom_query=None,
|
102 |
+
use_cache=False,
|
103 |
+
output_attentions=False,
|
104 |
+
):
|
105 |
+
query = self.q_proj(custom_query) if custom_query is not None else self.q_proj(hidden_states)
|
106 |
+
key = self.k_proj(hidden_states)
|
107 |
+
value = self.v_proj(hidden_states)
|
108 |
+
|
109 |
+
query = self._split_heads(query, self.num_heads, self.head_dim)
|
110 |
+
key = self._split_heads(key, self.num_heads, self.head_dim)
|
111 |
+
value = self._split_heads(value, self.num_heads, self.head_dim)
|
112 |
+
|
113 |
+
if layer_past is not None:
|
114 |
+
past_key, past_value = layer_past
|
115 |
+
key = torch.cat((past_key, key), dim=-2)
|
116 |
+
value = torch.cat((past_value, value), dim=-2)
|
117 |
+
|
118 |
+
if use_cache is True:
|
119 |
+
present = (key, value)
|
120 |
+
else:
|
121 |
+
present = None
|
122 |
+
|
123 |
+
attn_output, attn_weights = self._attn(query, key, value, attention_mask, head_mask)
|
124 |
+
|
125 |
+
attn_output = self._merge_heads(attn_output, self.num_heads, self.head_dim)
|
126 |
+
attn_output = self.c_proj(attn_output)
|
127 |
+
attn_output = self.resid_dropout(attn_output)
|
128 |
+
|
129 |
+
outputs = (attn_output, present)
|
130 |
+
if output_attentions:
|
131 |
+
outputs += (attn_weights,)
|
132 |
+
|
133 |
+
return outputs # a, present, (attentions)
|
134 |
+
|
135 |
+
|
136 |
+
class GPTPanguMLP(nn.Module):
|
137 |
+
def __init__(self, intermediate_size, config): # in MLP: intermediate_size= 4 * hidden_size
|
138 |
+
super().__init__()
|
139 |
+
embed_dim = config.hidden_size
|
140 |
+
self.c_fc = nn.Linear(embed_dim, intermediate_size)
|
141 |
+
self.c_proj = nn.Linear(intermediate_size, embed_dim)
|
142 |
+
self.act = ACT2FN[config.activation_function]
|
143 |
+
self.dropout = nn.Dropout(config.resid_pdrop)
|
144 |
+
|
145 |
+
def forward(self, hidden_states):
|
146 |
+
hidden_states = self.c_fc(hidden_states)
|
147 |
+
hidden_states = self.act(hidden_states)
|
148 |
+
hidden_states = self.c_proj(hidden_states)
|
149 |
+
hidden_states = self.dropout(hidden_states)
|
150 |
+
return hidden_states
|
151 |
+
|
152 |
+
|
153 |
+
class GPTPanguBlock(nn.Module):
|
154 |
+
def __init__(self, config):
|
155 |
+
super().__init__()
|
156 |
+
hidden_size = config.hidden_size
|
157 |
+
inner_dim = config.intermediate_size if config.intermediate_size is not None else 4 * hidden_size
|
158 |
+
|
159 |
+
self.ln_1 = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
|
160 |
+
self.attn = GPTPanguAttention(config)
|
161 |
+
self.ln_2 = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
|
162 |
+
self.mlp = GPTPanguMLP(inner_dim, config)
|
163 |
+
|
164 |
+
def forward(
|
165 |
+
self,
|
166 |
+
hidden_states,
|
167 |
+
layer_past=None,
|
168 |
+
attention_mask=None,
|
169 |
+
head_mask=None,
|
170 |
+
custom_query=None,
|
171 |
+
use_cache=False,
|
172 |
+
output_attentions=False,
|
173 |
+
):
|
174 |
+
residual = hidden_states
|
175 |
+
hidden_states = self.ln_1(hidden_states)
|
176 |
+
attn_outputs = self.attn(
|
177 |
+
hidden_states,
|
178 |
+
layer_past=layer_past,
|
179 |
+
attention_mask=attention_mask,
|
180 |
+
head_mask=head_mask,
|
181 |
+
custom_query=custom_query,
|
182 |
+
use_cache=use_cache,
|
183 |
+
output_attentions=output_attentions,
|
184 |
+
)
|
185 |
+
attn_output = attn_outputs[0] # output_attn: a, present, (attentions)
|
186 |
+
outputs = attn_outputs[1:]
|
187 |
+
# residual connection
|
188 |
+
hidden_states = attn_output + residual
|
189 |
+
|
190 |
+
residual = hidden_states
|
191 |
+
hidden_states = self.ln_2(hidden_states)
|
192 |
+
feed_forward_hidden_states = self.mlp(hidden_states)
|
193 |
+
# residual connection
|
194 |
+
hidden_states = residual + feed_forward_hidden_states
|
195 |
+
|
196 |
+
if use_cache:
|
197 |
+
outputs = (hidden_states,) + outputs
|
198 |
+
else:
|
199 |
+
outputs = (hidden_states,) + outputs[1:]
|
200 |
+
|
201 |
+
return outputs # hidden_states, present, (attentions, cross_attentions)
|
202 |
+
|
203 |
+
|
204 |
+
class GPTPanguPreTrainedModel(PreTrainedModel):
|
205 |
+
"""
|
206 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
207 |
+
models.
|
208 |
+
"""
|
209 |
+
|
210 |
+
# config_class = GPTPanguConfig
|
211 |
+
base_model_prefix = "transformer"
|
212 |
+
supports_gradient_checkpointing = True
|
213 |
+
|
214 |
+
def __init__(self, *inputs, **kwargs):
|
215 |
+
super().__init__(*inputs, **kwargs)
|
216 |
+
|
217 |
+
def _init_weights(self, module):
|
218 |
+
"""Initialize the weights."""
|
219 |
+
if isinstance(module, (nn.Linear,)):
|
220 |
+
# Slightly different from the TF version which uses truncated_normal for initialization
|
221 |
+
# cf https://github.com/pytorch/pytorch/pull/5617
|
222 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
223 |
+
if module.bias is not None:
|
224 |
+
module.bias.data.zero_()
|
225 |
+
elif isinstance(module, nn.Embedding):
|
226 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
227 |
+
if module.padding_idx is not None:
|
228 |
+
module.weight.data[module.padding_idx].zero_()
|
229 |
+
elif isinstance(module, nn.LayerNorm):
|
230 |
+
module.bias.data.zero_()
|
231 |
+
module.weight.data.fill_(1.0)
|
232 |
+
|
233 |
+
# Reinitialize selected weights subject to the OpenAI GPT-2 Paper Scheme:
|
234 |
+
# > A modified initialization which accounts for the accumulation on the residual path with model depth. Scale
|
235 |
+
# > the weights of residual layers at initialization by a factor of 1/√N where N is the # of residual layers.
|
236 |
+
# > -- GPT-2 :: https://openai.com/blog/better-language-models/
|
237 |
+
#
|
238 |
+
# Reference (Megatron-LM): https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/model/gpt_model.py
|
239 |
+
for name, p in module.named_parameters():
|
240 |
+
if "c_proj" in name and "weight" in name:
|
241 |
+
# Special Scaled Initialization --> There are 2 Layer Norms per Transformer Block
|
242 |
+
p.data.normal_(mean=0.0, std=(self.config.initializer_range / math.sqrt(2 * self.config.num_layers)))
|
243 |
+
|
244 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
245 |
+
if isinstance(module, GPTPanguModel):
|
246 |
+
module.gradient_checkpointing = value
|
247 |
+
|
248 |
+
|
249 |
+
class GPTPanguModel(GPTPanguPreTrainedModel):
|
250 |
+
def __init__(self, config):
|
251 |
+
super().__init__(config)
|
252 |
+
|
253 |
+
self.embed_dim = config.hidden_size
|
254 |
+
|
255 |
+
self.wte = nn.Embedding(config.vocab_size, self.embed_dim)
|
256 |
+
self.wpe = nn.Embedding(config.max_position_embeddings, self.embed_dim)
|
257 |
+
self.wqe = nn.Embedding(config.max_position_embeddings, self.embed_dim)
|
258 |
+
|
259 |
+
self.drop = nn.Dropout(config.embd_pdrop)
|
260 |
+
self.h = nn.ModuleList([GPTPanguBlock(config) for _ in range(config.num_layers)])
|
261 |
+
self.ln_f = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon)
|
262 |
+
|
263 |
+
self.gradient_checkpointing = False
|
264 |
+
# Initialize weights and apply final processing
|
265 |
+
self.post_init()
|
266 |
+
|
267 |
+
def get_input_embeddings(self):
|
268 |
+
return self.wte
|
269 |
+
|
270 |
+
def set_input_embeddings(self, new_embeddings):
|
271 |
+
self.wte = new_embeddings
|
272 |
+
|
273 |
+
def forward(
|
274 |
+
self,
|
275 |
+
input_ids=None,
|
276 |
+
past_key_values=None,
|
277 |
+
attention_mask=None,
|
278 |
+
token_type_ids=None,
|
279 |
+
position_ids=None,
|
280 |
+
head_mask=None,
|
281 |
+
inputs_embeds=None,
|
282 |
+
use_cache=None,
|
283 |
+
output_attentions=None,
|
284 |
+
output_hidden_states=None,
|
285 |
+
return_dict=None,
|
286 |
+
):
|
287 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
288 |
+
output_hidden_states = (
|
289 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
290 |
+
)
|
291 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
292 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
293 |
+
|
294 |
+
if input_ids is not None and inputs_embeds is not None:
|
295 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
296 |
+
elif input_ids is not None:
|
297 |
+
input_shape = input_ids.size()
|
298 |
+
input_ids = input_ids.view(-1, input_shape[-1])
|
299 |
+
batch_size = input_ids.shape[0]
|
300 |
+
elif inputs_embeds is not None:
|
301 |
+
input_shape = inputs_embeds.size()[:-1]
|
302 |
+
batch_size = inputs_embeds.shape[0]
|
303 |
+
else:
|
304 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
305 |
+
|
306 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
307 |
+
|
308 |
+
if token_type_ids is not None:
|
309 |
+
token_type_ids = token_type_ids.view(-1, input_shape[-1])
|
310 |
+
if position_ids is not None:
|
311 |
+
position_ids = position_ids.view(-1, input_shape[-1])
|
312 |
+
|
313 |
+
if past_key_values is None:
|
314 |
+
past_length = 0
|
315 |
+
past_key_values = tuple([None] * len(self.h))
|
316 |
+
else:
|
317 |
+
past_length = past_key_values[0][0].size(-2)
|
318 |
+
if position_ids is None:
|
319 |
+
position_ids = torch.arange(past_length, input_shape[-1] + past_length, dtype=torch.long, device=device)
|
320 |
+
position_ids = position_ids.unsqueeze(0).view(-1, input_shape[-1])
|
321 |
+
|
322 |
+
# GPT2Attention mask.
|
323 |
+
if attention_mask is not None:
|
324 |
+
if batch_size <= 0:
|
325 |
+
raise ValueError("batch_size has to be defined and > 0")
|
326 |
+
attention_mask = attention_mask.view(batch_size, -1)
|
327 |
+
# We create a 3D attention mask from a 2D tensor mask.
|
328 |
+
# Sizes are [batch_size, 1, 1, to_seq_length]
|
329 |
+
# So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
|
330 |
+
# this attention mask is more simple than the triangular masking of causal attention
|
331 |
+
# used in OpenAI GPT, we just need to prepare the broadcast dimension here.
|
332 |
+
attention_mask = attention_mask[:, None, None, :]
|
333 |
+
|
334 |
+
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for
|
335 |
+
# masked positions, this operation will create a tensor which is 0.0 for
|
336 |
+
# positions we want to attend and -10000.0 for masked positions.
|
337 |
+
# Since we are adding it to the raw scores before the softmax, this is
|
338 |
+
# effectively the same as removing these entirely.
|
339 |
+
attention_mask = attention_mask.to(dtype=self.dtype) # fp16 compatibility
|
340 |
+
attention_mask = (1.0 - attention_mask) * -10000.0
|
341 |
+
|
342 |
+
# Prepare head mask if needed
|
343 |
+
# 1.0 in head_mask indicate we keep the head
|
344 |
+
# attention_probs has shape bsz x num_heads x N x N
|
345 |
+
# head_mask has shape n_layer x batch x num_heads x N x N
|
346 |
+
head_mask = self.get_head_mask(head_mask, self.config.num_layers)
|
347 |
+
|
348 |
+
if inputs_embeds is None:
|
349 |
+
inputs_embeds = self.wte(input_ids)
|
350 |
+
position_embeds = self.wpe(position_ids)
|
351 |
+
hidden_states = inputs_embeds + position_embeds
|
352 |
+
|
353 |
+
if token_type_ids is not None:
|
354 |
+
token_type_embeds = self.wte(token_type_ids)
|
355 |
+
hidden_states = hidden_states + token_type_embeds
|
356 |
+
|
357 |
+
hidden_states = self.drop(hidden_states)
|
358 |
+
|
359 |
+
output_shape = input_shape + (hidden_states.size(-1),)
|
360 |
+
|
361 |
+
# top attention custom query
|
362 |
+
last_layer_id = len(self.h) - 1
|
363 |
+
query_embeds = self.wqe(position_ids)
|
364 |
+
|
365 |
+
presents = () if use_cache else None
|
366 |
+
all_self_attentions = () if output_attentions else None
|
367 |
+
all_hidden_states = () if output_hidden_states else None
|
368 |
+
for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)):
|
369 |
+
# Final LayerNorm before last query layer
|
370 |
+
if i == last_layer_id:
|
371 |
+
hidden_states = self.ln_f(hidden_states)
|
372 |
+
|
373 |
+
if output_hidden_states:
|
374 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
375 |
+
|
376 |
+
if self.gradient_checkpointing and self.training:
|
377 |
+
|
378 |
+
if use_cache:
|
379 |
+
logger.warning(
|
380 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
381 |
+
)
|
382 |
+
use_cache = False
|
383 |
+
|
384 |
+
def create_custom_forward(module):
|
385 |
+
def custom_forward(*inputs):
|
386 |
+
# None for past_key_value
|
387 |
+
return module(*inputs, use_cache, output_attentions)
|
388 |
+
|
389 |
+
return custom_forward
|
390 |
+
|
391 |
+
outputs = torch.utils.checkpoint.checkpoint(
|
392 |
+
create_custom_forward(block),
|
393 |
+
hidden_states=hidden_states,
|
394 |
+
layer_past=None,
|
395 |
+
attention_mask=attention_mask,
|
396 |
+
head_mask=head_mask[i],
|
397 |
+
# custom query
|
398 |
+
custom_query=query_embeds if i == last_layer_id else None,
|
399 |
+
)
|
400 |
+
else:
|
401 |
+
outputs = block(
|
402 |
+
hidden_states,
|
403 |
+
layer_past=layer_past,
|
404 |
+
attention_mask=attention_mask,
|
405 |
+
head_mask=head_mask[i],
|
406 |
+
# custom query
|
407 |
+
custom_query=query_embeds if i == last_layer_id else None,
|
408 |
+
use_cache=use_cache,
|
409 |
+
output_attentions=output_attentions,
|
410 |
+
)
|
411 |
+
|
412 |
+
hidden_states = outputs[0]
|
413 |
+
if use_cache is True:
|
414 |
+
presents = presents + (outputs[1],)
|
415 |
+
|
416 |
+
if output_attentions:
|
417 |
+
all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],)
|
418 |
+
|
419 |
+
hidden_states = hidden_states.view(*output_shape)
|
420 |
+
# Add last hidden state
|
421 |
+
if output_hidden_states:
|
422 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
423 |
+
|
424 |
+
if not return_dict:
|
425 |
+
return tuple(v for v in [hidden_states, presents, all_hidden_states, all_self_attentions] if v is not None)
|
426 |
+
|
427 |
+
return BaseModelOutputWithPast(
|
428 |
+
last_hidden_state=hidden_states,
|
429 |
+
past_key_values=presents,
|
430 |
+
hidden_states=all_hidden_states,
|
431 |
+
attentions=all_self_attentions,
|
432 |
+
)
|
433 |
+
|
434 |
+
|
435 |
+
class GPTPanguForCausalLM(GPTPanguPreTrainedModel):
|
436 |
+
def __init__(self, config):
|
437 |
+
super().__init__(config)
|
438 |
+
self.transformer = GPTPanguModel(config)
|
439 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
440 |
+
|
441 |
+
# Initialize weights and apply final processing
|
442 |
+
self.post_init()
|
443 |
+
|
444 |
+
def get_output_embeddings(self):
|
445 |
+
return self.lm_head
|
446 |
+
|
447 |
+
def set_output_embeddings(self, new_embeddings):
|
448 |
+
self.lm_head = new_embeddings
|
449 |
+
|
450 |
+
def prepare_inputs_for_generation(self, input_ids, past=None, **kwargs):
|
451 |
+
token_type_ids = kwargs.get("token_type_ids", None)
|
452 |
+
# only last token for inputs_ids if past is defined in kwargs
|
453 |
+
if past:
|
454 |
+
input_ids = input_ids[:, -1].unsqueeze(-1)
|
455 |
+
if token_type_ids is not None:
|
456 |
+
token_type_ids = token_type_ids[:, -1].unsqueeze(-1)
|
457 |
+
|
458 |
+
attention_mask = kwargs.get("attention_mask", None)
|
459 |
+
position_ids = kwargs.get("position_ids", None)
|
460 |
+
|
461 |
+
if attention_mask is not None and position_ids is None:
|
462 |
+
# create position_ids on the fly for batch generation
|
463 |
+
position_ids = attention_mask.int().cumsum(-1).long() - 1
|
464 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
465 |
+
if past:
|
466 |
+
position_ids = position_ids[:, -1].unsqueeze(-1)
|
467 |
+
else:
|
468 |
+
position_ids = None
|
469 |
+
return {
|
470 |
+
"input_ids": input_ids,
|
471 |
+
"past_key_values": past,
|
472 |
+
"use_cache": kwargs.get("use_cache"),
|
473 |
+
"position_ids": position_ids,
|
474 |
+
"attention_mask": attention_mask,
|
475 |
+
"token_type_ids": token_type_ids,
|
476 |
+
}
|
477 |
+
|
478 |
+
def forward(
|
479 |
+
self,
|
480 |
+
input_ids=None,
|
481 |
+
past_key_values=None,
|
482 |
+
attention_mask=None,
|
483 |
+
token_type_ids=None,
|
484 |
+
position_ids=None,
|
485 |
+
head_mask=None,
|
486 |
+
inputs_embeds=None,
|
487 |
+
labels=None,
|
488 |
+
use_cache=None,
|
489 |
+
output_attentions=None,
|
490 |
+
output_hidden_states=None,
|
491 |
+
return_dict=None,
|
492 |
+
):
|
493 |
+
r"""
|
494 |
+
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
|
495 |
+
Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
|
496 |
+
``labels = input_ids`` Indices are selected in ``[-100, 0, ..., config.vocab_size]`` All labels set to
|
497 |
+
``-100`` are ignored (masked), the loss is only computed for labels in ``[0, ..., config.vocab_size]``
|
498 |
+
"""
|
499 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
500 |
+
|
501 |
+
transformer_outputs = self.transformer(
|
502 |
+
input_ids,
|
503 |
+
past_key_values=past_key_values,
|
504 |
+
attention_mask=attention_mask,
|
505 |
+
token_type_ids=token_type_ids,
|
506 |
+
position_ids=position_ids,
|
507 |
+
head_mask=head_mask,
|
508 |
+
inputs_embeds=inputs_embeds,
|
509 |
+
use_cache=use_cache,
|
510 |
+
output_attentions=output_attentions,
|
511 |
+
output_hidden_states=output_hidden_states,
|
512 |
+
return_dict=return_dict,
|
513 |
+
)
|
514 |
+
hidden_states = transformer_outputs[0]
|
515 |
+
|
516 |
+
lm_logits = self.lm_head(hidden_states)
|
517 |
+
|
518 |
+
loss = None
|
519 |
+
if labels is not None:
|
520 |
+
# Shift so that tokens < n predict n
|
521 |
+
shift_logits = lm_logits[..., :-1, :].contiguous()
|
522 |
+
shift_labels = labels[..., 1:].contiguous()
|
523 |
+
# Flatten the tokens
|
524 |
+
loss_fct = nn.CrossEntropyLoss(ignore_index=self.config.pad_token_id)
|
525 |
+
loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
|
526 |
+
|
527 |
+
if not return_dict:
|
528 |
+
output = (lm_logits,) + transformer_outputs[1:]
|
529 |
+
return ((loss,) + output) if loss is not None else output
|
530 |
+
|
531 |
+
return CausalLMOutputWithPast(
|
532 |
+
loss=loss,
|
533 |
+
logits=lm_logits,
|
534 |
+
past_key_values=transformer_outputs.past_key_values,
|
535 |
+
hidden_states=transformer_outputs.hidden_states,
|
536 |
+
attentions=transformer_outputs.attentions,
|
537 |
+
)
|
538 |
+
|
539 |
+
@staticmethod
|
540 |
+
def _reorder_cache(past: Tuple[Tuple[torch.Tensor]], beam_idx: torch.Tensor) -> Tuple[Tuple[torch.Tensor]]:
|
541 |
+
"""
|
542 |
+
This function is used to re-order the :obj:`past_key_values` cache if
|
543 |
+
:meth:`~transformers.PreTrainedModel.beam_search` or :meth:`~transformers.PreTrainedModel.beam_sample` is
|
544 |
+
called. This is required to match :obj:`past_key_values` with the correct beam_idx at every generation step.
|
545 |
+
"""
|
546 |
+
return tuple(
|
547 |
+
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past)
|
548 |
+
for layer_past in past
|
549 |
+
)
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0e6057a5247066631c8ff228ad85d7d1c62da306aea8b39b5c5cd437fd72bf88
|
3 |
+
size 10534941219
|
tokenization_gptpangu.py
ADDED
@@ -0,0 +1,125 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
import torch
|
3 |
+
import sentencepiece
|
4 |
+
import jieba
|
5 |
+
import numpy as np
|
6 |
+
|
7 |
+
from transformers.tokenization_utils import PreTrainedTokenizer
|
8 |
+
|
9 |
+
jieba.add_word('<s>')
|
10 |
+
jieba.add_word('</s>')
|
11 |
+
jieba.add_word('<eot>')
|
12 |
+
jieba.add_word('<unk>')
|
13 |
+
jieba.add_word('<sep>')
|
14 |
+
jieba.add_word('<pad>')
|
15 |
+
|
16 |
+
|
17 |
+
class GPTPanguTokenizer(PreTrainedTokenizer):
|
18 |
+
# Ref: https://git.openi.org.cn/PCL-Platform.Intelligence/PanGu-Alpha/src/branch/master/tokenization_jieba.py
|
19 |
+
vocab_files_names = {
|
20 |
+
"model_file": "vocab.model"
|
21 |
+
}
|
22 |
+
|
23 |
+
def __init__(
|
24 |
+
self,
|
25 |
+
model_file,
|
26 |
+
**kwargs
|
27 |
+
):
|
28 |
+
super().__init__(**kwargs)
|
29 |
+
|
30 |
+
self.sp = sentencepiece.SentencePieceProcessor()
|
31 |
+
self.sp.Load(model_file=model_file)
|
32 |
+
self.translator = str.maketrans(" \n", "\u2582\u2583")
|
33 |
+
|
34 |
+
# special token ids
|
35 |
+
# self.eos_token_id = self.sp.piece_to_id("<eot>")
|
36 |
+
|
37 |
+
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
|
38 |
+
"""
|
39 |
+
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
|
40 |
+
adding special tokens. A BERT sequence has the following format:
|
41 |
+
|
42 |
+
- single sequence: `[CLS] X [SEP]`
|
43 |
+
- pair of sequences: `[CLS] A [SEP] B [SEP]`
|
44 |
+
|
45 |
+
Args:
|
46 |
+
token_ids_0 (`List[int]`):
|
47 |
+
List of IDs to which the special tokens will be added.
|
48 |
+
token_ids_1 (`List[int]`, *optional*):
|
49 |
+
Optional second list of IDs for sequence pairs.
|
50 |
+
|
51 |
+
Returns:
|
52 |
+
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
|
53 |
+
"""
|
54 |
+
if self.bos_token_id is not None:
|
55 |
+
if token_ids_1 is None:
|
56 |
+
return [self.bos_token_id] + token_ids_0 + [self.eos_token_id]
|
57 |
+
bos = [self.bos_token_id]
|
58 |
+
sep = [self.sep_token_id]
|
59 |
+
eos = [self.eos_token_id]
|
60 |
+
return bos + token_ids_0 + sep + token_ids_1 + eos
|
61 |
+
else:
|
62 |
+
if token_ids_1 is None:
|
63 |
+
return token_ids_0 + [self.eos_token_id]
|
64 |
+
sep = [self.sep_token_id]
|
65 |
+
eos = [self.eos_token_id]
|
66 |
+
return token_ids_0 + sep + token_ids_1 + eos
|
67 |
+
|
68 |
+
def tokenize(self, text, **kwargs):
|
69 |
+
""" Tokenize a string. """
|
70 |
+
seg_list = [x.translate(self.translator) for x in jieba.cut(text, cut_all=False)]
|
71 |
+
return seg_list
|
72 |
+
|
73 |
+
def convert_tokens_to_ids(self, tokens):
|
74 |
+
if tokens is None:
|
75 |
+
return None
|
76 |
+
|
77 |
+
if isinstance(tokens, str):
|
78 |
+
return self._convert_token_to_id_with_added_voc(tokens)
|
79 |
+
|
80 |
+
special_tokens_index = [i for i, token in enumerate(tokens) if token in self.all_special_tokens]
|
81 |
+
|
82 |
+
ids = []
|
83 |
+
i = 0
|
84 |
+
for j in special_tokens_index:
|
85 |
+
new_seg = " ".join(tokens[i:j])
|
86 |
+
ids.extend(self.sp.encode(new_seg))
|
87 |
+
ids.append(self._convert_token_to_id(tokens[j]))
|
88 |
+
i = j + 1
|
89 |
+
|
90 |
+
new_seg = " ".join(tokens[i:])
|
91 |
+
ids.extend(self.sp.encode(new_seg))
|
92 |
+
|
93 |
+
return ids
|
94 |
+
|
95 |
+
# new_seg = " ".join(tokens)
|
96 |
+
# return self.sp.encode(new_seg)
|
97 |
+
# # return tokens
|
98 |
+
|
99 |
+
def _convert_token_to_id(self, token):
|
100 |
+
return self.sp.piece_to_id(token)
|
101 |
+
|
102 |
+
def _convert_id_to_token(self, index):
|
103 |
+
return self.sp.id_to_piece(index)
|
104 |
+
|
105 |
+
def convert_ids_to_tokens(self, ids):
|
106 |
+
return self.decode(ids)
|
107 |
+
|
108 |
+
def decode(self, ids, **kwargs):
|
109 |
+
if isinstance(ids, torch.Tensor) or isinstance(ids, np.ndarray):
|
110 |
+
ids = ids.tolist()
|
111 |
+
|
112 |
+
if kwargs.get('skip_special_tokens', None) is True:
|
113 |
+
ids = [token_id for token_id in ids if token_id not in self.all_special_ids]
|
114 |
+
text = self.sp.decode(ids)
|
115 |
+
if isinstance(text, list):
|
116 |
+
text = text[0]
|
117 |
+
text = text.replace(' ', '').replace('\u2582', ' ').replace('\u2583', '\n')#.replace('⁇', self.unk_token)
|
118 |
+
return text
|
119 |
+
|
120 |
+
@property
|
121 |
+
def vocab_size(self) -> int:
|
122 |
+
"""
|
123 |
+
`int`: Size of the base vocabulary (without the added tokens).
|
124 |
+
"""
|
125 |
+
return len(self.sp)
|
tokenizer_config.json
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"eos_token": "<eot>",
|
3 |
+
"pad_token": "<pad>",
|
4 |
+
"unk_token": "<unk>",
|
5 |
+
"sep_token": "<sep>",
|
6 |
+
"bos_token": "<s>",
|
7 |
+
"add_prefix_space": false,
|
8 |
+
"tokenizer_class": "GPTPanguTokenizer",
|
9 |
+
"use_fast": false,
|
10 |
+
"auto_map": {
|
11 |
+
"AutoTokenizer": [
|
12 |
+
"tokenization_gptpangu.GPTPanguTokenizer",
|
13 |
+
null
|
14 |
+
]
|
15 |
+
}
|
16 |
+
}
|
vocab.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:18857e86783e50cfcaa0bc3c043fb4e9b5f240b885d2870ea593ee69b44f7a3a
|
3 |
+
size 879697
|