Upload ./training.log with huggingface_hub
Browse files- training.log +258 -0
training.log
ADDED
@@ -0,0 +1,258 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
2023-10-19 00:16:41,198 ----------------------------------------------------------------------------------------------------
|
2 |
+
2023-10-19 00:16:41,199 Model: "SequenceTagger(
|
3 |
+
(embeddings): TransformerWordEmbeddings(
|
4 |
+
(model): BertModel(
|
5 |
+
(embeddings): BertEmbeddings(
|
6 |
+
(word_embeddings): Embedding(31103, 768)
|
7 |
+
(position_embeddings): Embedding(512, 768)
|
8 |
+
(token_type_embeddings): Embedding(2, 768)
|
9 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
10 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
11 |
+
)
|
12 |
+
(encoder): BertEncoder(
|
13 |
+
(layer): ModuleList(
|
14 |
+
(0-11): 12 x BertLayer(
|
15 |
+
(attention): BertAttention(
|
16 |
+
(self): BertSelfAttention(
|
17 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
18 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
19 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
20 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
21 |
+
)
|
22 |
+
(output): BertSelfOutput(
|
23 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
24 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
25 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
26 |
+
)
|
27 |
+
)
|
28 |
+
(intermediate): BertIntermediate(
|
29 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
30 |
+
(intermediate_act_fn): GELUActivation()
|
31 |
+
)
|
32 |
+
(output): BertOutput(
|
33 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
34 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
35 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
36 |
+
)
|
37 |
+
)
|
38 |
+
)
|
39 |
+
)
|
40 |
+
(pooler): BertPooler(
|
41 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
42 |
+
(activation): Tanh()
|
43 |
+
)
|
44 |
+
)
|
45 |
+
)
|
46 |
+
(locked_dropout): LockedDropout(p=0.5)
|
47 |
+
(linear): Linear(in_features=768, out_features=81, bias=True)
|
48 |
+
(loss_function): CrossEntropyLoss()
|
49 |
+
)"
|
50 |
+
2023-10-19 00:16:41,199 ----------------------------------------------------------------------------------------------------
|
51 |
+
2023-10-19 00:16:41,199 Corpus: 6900 train + 1576 dev + 1833 test sentences
|
52 |
+
2023-10-19 00:16:41,199 ----------------------------------------------------------------------------------------------------
|
53 |
+
2023-10-19 00:16:41,199 Train: 6900 sentences
|
54 |
+
2023-10-19 00:16:41,200 (train_with_dev=False, train_with_test=False)
|
55 |
+
2023-10-19 00:16:41,200 ----------------------------------------------------------------------------------------------------
|
56 |
+
2023-10-19 00:16:41,200 Training Params:
|
57 |
+
2023-10-19 00:16:41,200 - learning_rate: "3e-05"
|
58 |
+
2023-10-19 00:16:41,200 - mini_batch_size: "16"
|
59 |
+
2023-10-19 00:16:41,200 - max_epochs: "10"
|
60 |
+
2023-10-19 00:16:41,200 - shuffle: "True"
|
61 |
+
2023-10-19 00:16:41,200 ----------------------------------------------------------------------------------------------------
|
62 |
+
2023-10-19 00:16:41,200 Plugins:
|
63 |
+
2023-10-19 00:16:41,200 - TensorboardLogger
|
64 |
+
2023-10-19 00:16:41,200 - LinearScheduler | warmup_fraction: '0.1'
|
65 |
+
2023-10-19 00:16:41,200 ----------------------------------------------------------------------------------------------------
|
66 |
+
2023-10-19 00:16:41,200 Final evaluation on model from best epoch (best-model.pt)
|
67 |
+
2023-10-19 00:16:41,200 - metric: "('micro avg', 'f1-score')"
|
68 |
+
2023-10-19 00:16:41,200 ----------------------------------------------------------------------------------------------------
|
69 |
+
2023-10-19 00:16:41,200 Computation:
|
70 |
+
2023-10-19 00:16:41,200 - compute on device: cuda:0
|
71 |
+
2023-10-19 00:16:41,200 - embedding storage: none
|
72 |
+
2023-10-19 00:16:41,200 ----------------------------------------------------------------------------------------------------
|
73 |
+
2023-10-19 00:16:41,200 Model training base path: "autotrain-flair-mobie-gbert_base-bs16-e10-lr3e-05-2"
|
74 |
+
2023-10-19 00:16:41,201 ----------------------------------------------------------------------------------------------------
|
75 |
+
2023-10-19 00:16:41,201 ----------------------------------------------------------------------------------------------------
|
76 |
+
2023-10-19 00:16:41,201 Logging anything other than scalars to TensorBoard is currently not supported.
|
77 |
+
2023-10-19 00:16:56,550 epoch 1 - iter 43/432 - loss 4.74339679 - time (sec): 15.35 - samples/sec: 393.65 - lr: 0.000003 - momentum: 0.000000
|
78 |
+
2023-10-19 00:17:10,707 epoch 1 - iter 86/432 - loss 3.69280224 - time (sec): 29.51 - samples/sec: 416.26 - lr: 0.000006 - momentum: 0.000000
|
79 |
+
2023-10-19 00:17:25,377 epoch 1 - iter 129/432 - loss 3.11907087 - time (sec): 44.18 - samples/sec: 412.84 - lr: 0.000009 - momentum: 0.000000
|
80 |
+
2023-10-19 00:17:39,369 epoch 1 - iter 172/432 - loss 2.79415985 - time (sec): 58.17 - samples/sec: 418.02 - lr: 0.000012 - momentum: 0.000000
|
81 |
+
2023-10-19 00:17:54,435 epoch 1 - iter 215/432 - loss 2.57050206 - time (sec): 73.23 - samples/sec: 411.49 - lr: 0.000015 - momentum: 0.000000
|
82 |
+
2023-10-19 00:18:09,813 epoch 1 - iter 258/432 - loss 2.33799933 - time (sec): 88.61 - samples/sec: 413.95 - lr: 0.000018 - momentum: 0.000000
|
83 |
+
2023-10-19 00:18:24,648 epoch 1 - iter 301/432 - loss 2.16172499 - time (sec): 103.45 - samples/sec: 414.53 - lr: 0.000021 - momentum: 0.000000
|
84 |
+
2023-10-19 00:18:39,760 epoch 1 - iter 344/432 - loss 2.01712724 - time (sec): 118.56 - samples/sec: 413.49 - lr: 0.000024 - momentum: 0.000000
|
85 |
+
2023-10-19 00:18:54,151 epoch 1 - iter 387/432 - loss 1.88891723 - time (sec): 132.95 - samples/sec: 413.69 - lr: 0.000027 - momentum: 0.000000
|
86 |
+
2023-10-19 00:19:09,750 epoch 1 - iter 430/432 - loss 1.76466676 - time (sec): 148.55 - samples/sec: 414.43 - lr: 0.000030 - momentum: 0.000000
|
87 |
+
2023-10-19 00:19:10,345 ----------------------------------------------------------------------------------------------------
|
88 |
+
2023-10-19 00:19:10,346 EPOCH 1 done: loss 1.7605 - lr: 0.000030
|
89 |
+
2023-10-19 00:19:23,881 DEV : loss 0.5642062425613403 - f1-score (micro avg) 0.6351
|
90 |
+
2023-10-19 00:19:23,905 saving best model
|
91 |
+
2023-10-19 00:19:24,363 ----------------------------------------------------------------------------------------------------
|
92 |
+
2023-10-19 00:19:38,473 epoch 2 - iter 43/432 - loss 0.63277954 - time (sec): 14.11 - samples/sec: 460.79 - lr: 0.000030 - momentum: 0.000000
|
93 |
+
2023-10-19 00:19:52,843 epoch 2 - iter 86/432 - loss 0.58715243 - time (sec): 28.48 - samples/sec: 447.57 - lr: 0.000029 - momentum: 0.000000
|
94 |
+
2023-10-19 00:20:08,079 epoch 2 - iter 129/432 - loss 0.57597451 - time (sec): 43.71 - samples/sec: 428.05 - lr: 0.000029 - momentum: 0.000000
|
95 |
+
2023-10-19 00:20:23,330 epoch 2 - iter 172/432 - loss 0.55894939 - time (sec): 58.97 - samples/sec: 424.51 - lr: 0.000029 - momentum: 0.000000
|
96 |
+
2023-10-19 00:20:38,457 epoch 2 - iter 215/432 - loss 0.54682286 - time (sec): 74.09 - samples/sec: 418.14 - lr: 0.000028 - momentum: 0.000000
|
97 |
+
2023-10-19 00:20:53,042 epoch 2 - iter 258/432 - loss 0.53151093 - time (sec): 88.68 - samples/sec: 418.66 - lr: 0.000028 - momentum: 0.000000
|
98 |
+
2023-10-19 00:21:07,908 epoch 2 - iter 301/432 - loss 0.51887975 - time (sec): 103.54 - samples/sec: 414.79 - lr: 0.000028 - momentum: 0.000000
|
99 |
+
2023-10-19 00:21:22,719 epoch 2 - iter 344/432 - loss 0.51217919 - time (sec): 118.35 - samples/sec: 414.72 - lr: 0.000027 - momentum: 0.000000
|
100 |
+
2023-10-19 00:21:37,756 epoch 2 - iter 387/432 - loss 0.49869397 - time (sec): 133.39 - samples/sec: 414.52 - lr: 0.000027 - momentum: 0.000000
|
101 |
+
2023-10-19 00:21:52,045 epoch 2 - iter 430/432 - loss 0.49068478 - time (sec): 147.68 - samples/sec: 417.04 - lr: 0.000027 - momentum: 0.000000
|
102 |
+
2023-10-19 00:21:52,617 ----------------------------------------------------------------------------------------------------
|
103 |
+
2023-10-19 00:21:52,617 EPOCH 2 done: loss 0.4907 - lr: 0.000027
|
104 |
+
2023-10-19 00:22:05,834 DEV : loss 0.346346378326416 - f1-score (micro avg) 0.7698
|
105 |
+
2023-10-19 00:22:05,858 saving best model
|
106 |
+
2023-10-19 00:22:07,095 ----------------------------------------------------------------------------------------------------
|
107 |
+
2023-10-19 00:22:21,551 epoch 3 - iter 43/432 - loss 0.34282667 - time (sec): 14.45 - samples/sec: 406.92 - lr: 0.000026 - momentum: 0.000000
|
108 |
+
2023-10-19 00:22:36,270 epoch 3 - iter 86/432 - loss 0.33200713 - time (sec): 29.17 - samples/sec: 403.75 - lr: 0.000026 - momentum: 0.000000
|
109 |
+
2023-10-19 00:22:52,022 epoch 3 - iter 129/432 - loss 0.32080282 - time (sec): 44.93 - samples/sec: 396.68 - lr: 0.000026 - momentum: 0.000000
|
110 |
+
2023-10-19 00:23:07,641 epoch 3 - iter 172/432 - loss 0.31771938 - time (sec): 60.54 - samples/sec: 393.81 - lr: 0.000025 - momentum: 0.000000
|
111 |
+
2023-10-19 00:23:22,177 epoch 3 - iter 215/432 - loss 0.31302256 - time (sec): 75.08 - samples/sec: 400.77 - lr: 0.000025 - momentum: 0.000000
|
112 |
+
2023-10-19 00:23:36,579 epoch 3 - iter 258/432 - loss 0.31007470 - time (sec): 89.48 - samples/sec: 407.35 - lr: 0.000025 - momentum: 0.000000
|
113 |
+
2023-10-19 00:23:50,695 epoch 3 - iter 301/432 - loss 0.30555352 - time (sec): 103.60 - samples/sec: 412.23 - lr: 0.000024 - momentum: 0.000000
|
114 |
+
2023-10-19 00:24:06,473 epoch 3 - iter 344/432 - loss 0.29928908 - time (sec): 119.38 - samples/sec: 411.36 - lr: 0.000024 - momentum: 0.000000
|
115 |
+
2023-10-19 00:24:20,745 epoch 3 - iter 387/432 - loss 0.29428176 - time (sec): 133.65 - samples/sec: 412.12 - lr: 0.000024 - momentum: 0.000000
|
116 |
+
2023-10-19 00:24:35,460 epoch 3 - iter 430/432 - loss 0.29672467 - time (sec): 148.36 - samples/sec: 415.78 - lr: 0.000023 - momentum: 0.000000
|
117 |
+
2023-10-19 00:24:35,971 ----------------------------------------------------------------------------------------------------
|
118 |
+
2023-10-19 00:24:35,971 EPOCH 3 done: loss 0.2967 - lr: 0.000023
|
119 |
+
2023-10-19 00:24:49,187 DEV : loss 0.31504037976264954 - f1-score (micro avg) 0.7963
|
120 |
+
2023-10-19 00:24:49,211 saving best model
|
121 |
+
2023-10-19 00:24:50,467 ----------------------------------------------------------------------------------------------------
|
122 |
+
2023-10-19 00:25:05,412 epoch 4 - iter 43/432 - loss 0.20335532 - time (sec): 14.94 - samples/sec: 420.97 - lr: 0.000023 - momentum: 0.000000
|
123 |
+
2023-10-19 00:25:20,061 epoch 4 - iter 86/432 - loss 0.22350075 - time (sec): 29.59 - samples/sec: 420.23 - lr: 0.000023 - momentum: 0.000000
|
124 |
+
2023-10-19 00:25:35,172 epoch 4 - iter 129/432 - loss 0.22388534 - time (sec): 44.70 - samples/sec: 421.31 - lr: 0.000022 - momentum: 0.000000
|
125 |
+
2023-10-19 00:25:49,750 epoch 4 - iter 172/432 - loss 0.22617688 - time (sec): 59.28 - samples/sec: 417.61 - lr: 0.000022 - momentum: 0.000000
|
126 |
+
2023-10-19 00:26:05,215 epoch 4 - iter 215/432 - loss 0.21971434 - time (sec): 74.75 - samples/sec: 414.52 - lr: 0.000022 - momentum: 0.000000
|
127 |
+
2023-10-19 00:26:20,389 epoch 4 - iter 258/432 - loss 0.22117839 - time (sec): 89.92 - samples/sec: 414.89 - lr: 0.000021 - momentum: 0.000000
|
128 |
+
2023-10-19 00:26:35,115 epoch 4 - iter 301/432 - loss 0.22265378 - time (sec): 104.65 - samples/sec: 416.69 - lr: 0.000021 - momentum: 0.000000
|
129 |
+
2023-10-19 00:26:49,810 epoch 4 - iter 344/432 - loss 0.22151182 - time (sec): 119.34 - samples/sec: 416.37 - lr: 0.000021 - momentum: 0.000000
|
130 |
+
2023-10-19 00:27:03,535 epoch 4 - iter 387/432 - loss 0.21789655 - time (sec): 133.07 - samples/sec: 419.09 - lr: 0.000020 - momentum: 0.000000
|
131 |
+
2023-10-19 00:27:18,579 epoch 4 - iter 430/432 - loss 0.21456196 - time (sec): 148.11 - samples/sec: 416.70 - lr: 0.000020 - momentum: 0.000000
|
132 |
+
2023-10-19 00:27:19,241 ----------------------------------------------------------------------------------------------------
|
133 |
+
2023-10-19 00:27:19,242 EPOCH 4 done: loss 0.2144 - lr: 0.000020
|
134 |
+
2023-10-19 00:27:32,562 DEV : loss 0.3091279864311218 - f1-score (micro avg) 0.8213
|
135 |
+
2023-10-19 00:27:32,590 saving best model
|
136 |
+
2023-10-19 00:27:34,992 ----------------------------------------------------------------------------------------------------
|
137 |
+
2023-10-19 00:27:49,017 epoch 5 - iter 43/432 - loss 0.17866192 - time (sec): 14.02 - samples/sec: 435.90 - lr: 0.000020 - momentum: 0.000000
|
138 |
+
2023-10-19 00:28:03,936 epoch 5 - iter 86/432 - loss 0.17512337 - time (sec): 28.94 - samples/sec: 420.14 - lr: 0.000019 - momentum: 0.000000
|
139 |
+
2023-10-19 00:28:19,866 epoch 5 - iter 129/432 - loss 0.16824137 - time (sec): 44.87 - samples/sec: 407.60 - lr: 0.000019 - momentum: 0.000000
|
140 |
+
2023-10-19 00:28:34,676 epoch 5 - iter 172/432 - loss 0.16860082 - time (sec): 59.68 - samples/sec: 411.83 - lr: 0.000019 - momentum: 0.000000
|
141 |
+
2023-10-19 00:28:49,495 epoch 5 - iter 215/432 - loss 0.16529930 - time (sec): 74.50 - samples/sec: 410.46 - lr: 0.000018 - momentum: 0.000000
|
142 |
+
2023-10-19 00:29:03,952 epoch 5 - iter 258/432 - loss 0.16770005 - time (sec): 88.96 - samples/sec: 417.59 - lr: 0.000018 - momentum: 0.000000
|
143 |
+
2023-10-19 00:29:18,790 epoch 5 - iter 301/432 - loss 0.16640170 - time (sec): 103.80 - samples/sec: 416.69 - lr: 0.000018 - momentum: 0.000000
|
144 |
+
2023-10-19 00:29:33,385 epoch 5 - iter 344/432 - loss 0.16427645 - time (sec): 118.39 - samples/sec: 418.21 - lr: 0.000017 - momentum: 0.000000
|
145 |
+
2023-10-19 00:29:48,488 epoch 5 - iter 387/432 - loss 0.16540814 - time (sec): 133.50 - samples/sec: 416.79 - lr: 0.000017 - momentum: 0.000000
|
146 |
+
2023-10-19 00:30:02,971 epoch 5 - iter 430/432 - loss 0.16431132 - time (sec): 147.98 - samples/sec: 416.45 - lr: 0.000017 - momentum: 0.000000
|
147 |
+
2023-10-19 00:30:03,520 ----------------------------------------------------------------------------------------------------
|
148 |
+
2023-10-19 00:30:03,521 EPOCH 5 done: loss 0.1640 - lr: 0.000017
|
149 |
+
2023-10-19 00:30:16,827 DEV : loss 0.3160895109176636 - f1-score (micro avg) 0.8377
|
150 |
+
2023-10-19 00:30:16,851 saving best model
|
151 |
+
2023-10-19 00:30:18,089 ----------------------------------------------------------------------------------------------------
|
152 |
+
2023-10-19 00:30:33,807 epoch 6 - iter 43/432 - loss 0.11962951 - time (sec): 15.72 - samples/sec: 392.96 - lr: 0.000016 - momentum: 0.000000
|
153 |
+
2023-10-19 00:30:48,631 epoch 6 - iter 86/432 - loss 0.11884539 - time (sec): 30.54 - samples/sec: 397.61 - lr: 0.000016 - momentum: 0.000000
|
154 |
+
2023-10-19 00:31:03,258 epoch 6 - iter 129/432 - loss 0.12228484 - time (sec): 45.17 - samples/sec: 400.22 - lr: 0.000016 - momentum: 0.000000
|
155 |
+
2023-10-19 00:31:17,032 epoch 6 - iter 172/432 - loss 0.12474293 - time (sec): 58.94 - samples/sec: 414.07 - lr: 0.000015 - momentum: 0.000000
|
156 |
+
2023-10-19 00:31:31,618 epoch 6 - iter 215/432 - loss 0.12867530 - time (sec): 73.53 - samples/sec: 415.73 - lr: 0.000015 - momentum: 0.000000
|
157 |
+
2023-10-19 00:31:46,035 epoch 6 - iter 258/432 - loss 0.12946820 - time (sec): 87.94 - samples/sec: 419.70 - lr: 0.000015 - momentum: 0.000000
|
158 |
+
2023-10-19 00:32:01,941 epoch 6 - iter 301/432 - loss 0.13096586 - time (sec): 103.85 - samples/sec: 416.74 - lr: 0.000014 - momentum: 0.000000
|
159 |
+
2023-10-19 00:32:16,804 epoch 6 - iter 344/432 - loss 0.12989295 - time (sec): 118.71 - samples/sec: 415.91 - lr: 0.000014 - momentum: 0.000000
|
160 |
+
2023-10-19 00:32:31,446 epoch 6 - iter 387/432 - loss 0.12982969 - time (sec): 133.35 - samples/sec: 414.74 - lr: 0.000014 - momentum: 0.000000
|
161 |
+
2023-10-19 00:32:46,889 epoch 6 - iter 430/432 - loss 0.12896680 - time (sec): 148.80 - samples/sec: 414.57 - lr: 0.000013 - momentum: 0.000000
|
162 |
+
2023-10-19 00:32:47,622 ----------------------------------------------------------------------------------------------------
|
163 |
+
2023-10-19 00:32:47,623 EPOCH 6 done: loss 0.1289 - lr: 0.000013
|
164 |
+
2023-10-19 00:33:00,960 DEV : loss 0.33405086398124695 - f1-score (micro avg) 0.8325
|
165 |
+
2023-10-19 00:33:00,984 ----------------------------------------------------------------------------------------------------
|
166 |
+
2023-10-19 00:33:14,708 epoch 7 - iter 43/432 - loss 0.09581046 - time (sec): 13.72 - samples/sec: 465.09 - lr: 0.000013 - momentum: 0.000000
|
167 |
+
2023-10-19 00:33:29,254 epoch 7 - iter 86/432 - loss 0.09800936 - time (sec): 28.27 - samples/sec: 441.95 - lr: 0.000013 - momentum: 0.000000
|
168 |
+
2023-10-19 00:33:44,617 epoch 7 - iter 129/432 - loss 0.09725239 - time (sec): 43.63 - samples/sec: 419.20 - lr: 0.000012 - momentum: 0.000000
|
169 |
+
2023-10-19 00:34:00,001 epoch 7 - iter 172/432 - loss 0.09688733 - time (sec): 59.02 - samples/sec: 416.05 - lr: 0.000012 - momentum: 0.000000
|
170 |
+
2023-10-19 00:34:14,468 epoch 7 - iter 215/432 - loss 0.10137512 - time (sec): 73.48 - samples/sec: 420.10 - lr: 0.000012 - momentum: 0.000000
|
171 |
+
2023-10-19 00:34:29,569 epoch 7 - iter 258/432 - loss 0.10565885 - time (sec): 88.58 - samples/sec: 418.11 - lr: 0.000011 - momentum: 0.000000
|
172 |
+
2023-10-19 00:34:44,754 epoch 7 - iter 301/432 - loss 0.10530649 - time (sec): 103.77 - samples/sec: 416.15 - lr: 0.000011 - momentum: 0.000000
|
173 |
+
2023-10-19 00:34:59,759 epoch 7 - iter 344/432 - loss 0.10536216 - time (sec): 118.77 - samples/sec: 414.76 - lr: 0.000011 - momentum: 0.000000
|
174 |
+
2023-10-19 00:35:15,545 epoch 7 - iter 387/432 - loss 0.10554671 - time (sec): 134.56 - samples/sec: 412.00 - lr: 0.000010 - momentum: 0.000000
|
175 |
+
2023-10-19 00:35:31,052 epoch 7 - iter 430/432 - loss 0.10598819 - time (sec): 150.07 - samples/sec: 411.01 - lr: 0.000010 - momentum: 0.000000
|
176 |
+
2023-10-19 00:35:31,863 ----------------------------------------------------------------------------------------------------
|
177 |
+
2023-10-19 00:35:31,863 EPOCH 7 done: loss 0.1058 - lr: 0.000010
|
178 |
+
2023-10-19 00:35:45,283 DEV : loss 0.351141095161438 - f1-score (micro avg) 0.831
|
179 |
+
2023-10-19 00:35:45,307 ----------------------------------------------------------------------------------------------------
|
180 |
+
2023-10-19 00:35:59,848 epoch 8 - iter 43/432 - loss 0.07709807 - time (sec): 14.54 - samples/sec: 410.88 - lr: 0.000010 - momentum: 0.000000
|
181 |
+
2023-10-19 00:36:14,941 epoch 8 - iter 86/432 - loss 0.08407471 - time (sec): 29.63 - samples/sec: 424.33 - lr: 0.000009 - momentum: 0.000000
|
182 |
+
2023-10-19 00:36:29,079 epoch 8 - iter 129/432 - loss 0.07999086 - time (sec): 43.77 - samples/sec: 416.05 - lr: 0.000009 - momentum: 0.000000
|
183 |
+
2023-10-19 00:36:42,973 epoch 8 - iter 172/432 - loss 0.08291254 - time (sec): 57.66 - samples/sec: 434.37 - lr: 0.000009 - momentum: 0.000000
|
184 |
+
2023-10-19 00:36:57,433 epoch 8 - iter 215/432 - loss 0.08343817 - time (sec): 72.12 - samples/sec: 436.23 - lr: 0.000008 - momentum: 0.000000
|
185 |
+
2023-10-19 00:37:12,605 epoch 8 - iter 258/432 - loss 0.08221956 - time (sec): 87.30 - samples/sec: 429.21 - lr: 0.000008 - momentum: 0.000000
|
186 |
+
2023-10-19 00:37:27,858 epoch 8 - iter 301/432 - loss 0.08082516 - time (sec): 102.55 - samples/sec: 426.54 - lr: 0.000008 - momentum: 0.000000
|
187 |
+
2023-10-19 00:37:42,508 epoch 8 - iter 344/432 - loss 0.08300870 - time (sec): 117.20 - samples/sec: 427.00 - lr: 0.000007 - momentum: 0.000000
|
188 |
+
2023-10-19 00:37:57,378 epoch 8 - iter 387/432 - loss 0.08417221 - time (sec): 132.07 - samples/sec: 422.73 - lr: 0.000007 - momentum: 0.000000
|
189 |
+
2023-10-19 00:38:12,945 epoch 8 - iter 430/432 - loss 0.08447959 - time (sec): 147.64 - samples/sec: 417.49 - lr: 0.000007 - momentum: 0.000000
|
190 |
+
2023-10-19 00:38:13,806 ----------------------------------------------------------------------------------------------------
|
191 |
+
2023-10-19 00:38:13,806 EPOCH 8 done: loss 0.0846 - lr: 0.000007
|
192 |
+
2023-10-19 00:38:27,128 DEV : loss 0.35482051968574524 - f1-score (micro avg) 0.8445
|
193 |
+
2023-10-19 00:38:27,153 saving best model
|
194 |
+
2023-10-19 00:38:28,401 ----------------------------------------------------------------------------------------------------
|
195 |
+
2023-10-19 00:38:42,957 epoch 9 - iter 43/432 - loss 0.07970238 - time (sec): 14.55 - samples/sec: 410.87 - lr: 0.000006 - momentum: 0.000000
|
196 |
+
2023-10-19 00:38:57,617 epoch 9 - iter 86/432 - loss 0.06637511 - time (sec): 29.21 - samples/sec: 426.50 - lr: 0.000006 - momentum: 0.000000
|
197 |
+
2023-10-19 00:39:13,050 epoch 9 - iter 129/432 - loss 0.06582245 - time (sec): 44.65 - samples/sec: 415.68 - lr: 0.000006 - momentum: 0.000000
|
198 |
+
2023-10-19 00:39:29,031 epoch 9 - iter 172/432 - loss 0.06680679 - time (sec): 60.63 - samples/sec: 400.85 - lr: 0.000005 - momentum: 0.000000
|
199 |
+
2023-10-19 00:39:43,689 epoch 9 - iter 215/432 - loss 0.06514411 - time (sec): 75.29 - samples/sec: 410.03 - lr: 0.000005 - momentum: 0.000000
|
200 |
+
2023-10-19 00:39:58,720 epoch 9 - iter 258/432 - loss 0.06484547 - time (sec): 90.32 - samples/sec: 409.12 - lr: 0.000005 - momentum: 0.000000
|
201 |
+
2023-10-19 00:40:13,802 epoch 9 - iter 301/432 - loss 0.06626985 - time (sec): 105.40 - samples/sec: 411.40 - lr: 0.000004 - momentum: 0.000000
|
202 |
+
2023-10-19 00:40:28,801 epoch 9 - iter 344/432 - loss 0.06745724 - time (sec): 120.40 - samples/sec: 409.92 - lr: 0.000004 - momentum: 0.000000
|
203 |
+
2023-10-19 00:40:43,958 epoch 9 - iter 387/432 - loss 0.06792850 - time (sec): 135.56 - samples/sec: 408.61 - lr: 0.000004 - momentum: 0.000000
|
204 |
+
2023-10-19 00:40:59,712 epoch 9 - iter 430/432 - loss 0.06892771 - time (sec): 151.31 - samples/sec: 407.87 - lr: 0.000003 - momentum: 0.000000
|
205 |
+
2023-10-19 00:41:00,072 ----------------------------------------------------------------------------------------------------
|
206 |
+
2023-10-19 00:41:00,072 EPOCH 9 done: loss 0.0689 - lr: 0.000003
|
207 |
+
2023-10-19 00:41:13,916 DEV : loss 0.3687077760696411 - f1-score (micro avg) 0.839
|
208 |
+
2023-10-19 00:41:13,941 ----------------------------------------------------------------------------------------------------
|
209 |
+
2023-10-19 00:41:27,952 epoch 10 - iter 43/432 - loss 0.06914216 - time (sec): 14.01 - samples/sec: 423.21 - lr: 0.000003 - momentum: 0.000000
|
210 |
+
2023-10-19 00:41:43,413 epoch 10 - iter 86/432 - loss 0.06348909 - time (sec): 29.47 - samples/sec: 402.17 - lr: 0.000003 - momentum: 0.000000
|
211 |
+
2023-10-19 00:41:58,231 epoch 10 - iter 129/432 - loss 0.06567792 - time (sec): 44.29 - samples/sec: 408.14 - lr: 0.000002 - momentum: 0.000000
|
212 |
+
2023-10-19 00:42:13,509 epoch 10 - iter 172/432 - loss 0.06502152 - time (sec): 59.57 - samples/sec: 413.44 - lr: 0.000002 - momentum: 0.000000
|
213 |
+
2023-10-19 00:42:28,837 epoch 10 - iter 215/432 - loss 0.06585712 - time (sec): 74.89 - samples/sec: 417.08 - lr: 0.000002 - momentum: 0.000000
|
214 |
+
2023-10-19 00:42:43,697 epoch 10 - iter 258/432 - loss 0.06365877 - time (sec): 89.75 - samples/sec: 417.12 - lr: 0.000001 - momentum: 0.000000
|
215 |
+
2023-10-19 00:42:58,257 epoch 10 - iter 301/432 - loss 0.06317799 - time (sec): 104.31 - samples/sec: 418.47 - lr: 0.000001 - momentum: 0.000000
|
216 |
+
2023-10-19 00:43:13,120 epoch 10 - iter 344/432 - loss 0.06253740 - time (sec): 119.18 - samples/sec: 418.00 - lr: 0.000001 - momentum: 0.000000
|
217 |
+
2023-10-19 00:43:26,660 epoch 10 - iter 387/432 - loss 0.06022767 - time (sec): 132.72 - samples/sec: 419.38 - lr: 0.000000 - momentum: 0.000000
|
218 |
+
2023-10-19 00:43:42,384 epoch 10 - iter 430/432 - loss 0.05945663 - time (sec): 148.44 - samples/sec: 415.36 - lr: 0.000000 - momentum: 0.000000
|
219 |
+
2023-10-19 00:43:43,064 ----------------------------------------------------------------------------------------------------
|
220 |
+
2023-10-19 00:43:43,064 EPOCH 10 done: loss 0.0593 - lr: 0.000000
|
221 |
+
2023-10-19 00:43:56,330 DEV : loss 0.37211665511131287 - f1-score (micro avg) 0.837
|
222 |
+
2023-10-19 00:43:56,780 ----------------------------------------------------------------------------------------------------
|
223 |
+
2023-10-19 00:43:56,781 Loading model from best epoch ...
|
224 |
+
2023-10-19 00:43:58,908 SequenceTagger predicts: Dictionary with 81 tags: O, S-location-route, B-location-route, E-location-route, I-location-route, S-location-stop, B-location-stop, E-location-stop, I-location-stop, S-trigger, B-trigger, E-trigger, I-trigger, S-organization-company, B-organization-company, E-organization-company, I-organization-company, S-location-city, B-location-city, E-location-city, I-location-city, S-location, B-location, E-location, I-location, S-event-cause, B-event-cause, E-event-cause, I-event-cause, S-location-street, B-location-street, E-location-street, I-location-street, S-time, B-time, E-time, I-time, S-date, B-date, E-date, I-date, S-number, B-number, E-number, I-number, S-duration, B-duration, E-duration, I-duration, S-organization
|
225 |
+
2023-10-19 00:44:16,847
|
226 |
+
Results:
|
227 |
+
- F-score (micro) 0.7524
|
228 |
+
- F-score (macro) 0.553
|
229 |
+
- Accuracy 0.6489
|
230 |
+
|
231 |
+
By class:
|
232 |
+
precision recall f1-score support
|
233 |
+
|
234 |
+
trigger 0.6983 0.6086 0.6504 833
|
235 |
+
location-stop 0.8598 0.7856 0.8210 765
|
236 |
+
location 0.8076 0.8331 0.8201 665
|
237 |
+
location-city 0.7705 0.8958 0.8284 566
|
238 |
+
date 0.8786 0.8452 0.8616 394
|
239 |
+
location-street 0.9137 0.8782 0.8956 386
|
240 |
+
time 0.7917 0.8906 0.8382 256
|
241 |
+
location-route 0.8138 0.7077 0.7571 284
|
242 |
+
organization-company 0.7578 0.6706 0.7116 252
|
243 |
+
number 0.6378 0.8389 0.7246 149
|
244 |
+
distance 1.0000 1.0000 1.0000 167
|
245 |
+
duration 0.3091 0.3129 0.3110 163
|
246 |
+
event-cause 0.0000 0.0000 0.0000 0
|
247 |
+
disaster-type 0.8333 0.1449 0.2469 69
|
248 |
+
organization 0.3750 0.5357 0.4412 28
|
249 |
+
person 0.4500 0.9000 0.6000 10
|
250 |
+
set 0.0000 0.0000 0.0000 0
|
251 |
+
org-position 0.0000 0.0000 0.0000 1
|
252 |
+
money 0.0000 0.0000 0.0000 0
|
253 |
+
|
254 |
+
micro avg 0.7403 0.7650 0.7524 4988
|
255 |
+
macro avg 0.5735 0.5709 0.5530 4988
|
256 |
+
weighted avg 0.7861 0.7650 0.7697 4988
|
257 |
+
|
258 |
+
2023-10-19 00:44:16,847 ----------------------------------------------------------------------------------------------------
|