File size: 2,720 Bytes
36e4b37 89846e1 36e4b37 89846e1 36e4b37 89846e1 36e4b37 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 |
---
license: llama3
library_name: peft
tags:
- alignment-handbook
- trl
- orpo
- generated_from_trainer
base_model: meta-llama/Meta-Llama-3-70B-Instruct
datasets:
- HuggingFaceH4/ultrafeedback_binarized
model-index:
- name: Meta-Llama-3-70B-Instruct
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/statking/huggingface/runs/f61fvw8u)
# Meta-Llama-3-70B-Instruct
This model is a fine-tuned version of [meta-llama/Meta-Llama-3-70B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-70B-Instruct) on the HuggingFaceH4/ultrafeedback_binarized dataset.
It achieves the following results on the evaluation set:
- Loss: 1.2884
- Rewards/chosen: -0.0888
- Rewards/rejected: -0.1138
- Rewards/accuracies: 0.6132
- Rewards/margins: 0.0250
- Logps/rejected: -1.1382
- Logps/chosen: -0.8884
- Logits/rejected: -0.0033
- Logits/chosen: 0.2012
- Nll Loss: 1.2075
- Log Odds Ratio: -0.6278
- Log Odds Chosen: 0.3768
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- total_eval_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen | Nll Loss | Log Odds Ratio | Log Odds Chosen |
|:-------------:|:------:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:|:--------:|:--------------:|:---------------:|
| 1.2483 | 0.9999 | 3555 | 1.2884 | -0.0888 | -0.1138 | 0.6132 | 0.0250 | -1.1382 | -0.8884 | -0.0033 | 0.2012 | 1.2075 | -0.6278 | 0.3768 |
### Framework versions
- PEFT 0.11.1
- Transformers 4.41.0
- Pytorch 2.2.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1 |