File size: 2,720 Bytes
36e4b37
 
 
 
89846e1
36e4b37
 
 
 
89846e1
 
36e4b37
 
 
 
 
 
 
 
 
 
 
89846e1
36e4b37
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
---
license: llama3
library_name: peft
tags:
- alignment-handbook
- trl
- orpo
- generated_from_trainer
base_model: meta-llama/Meta-Llama-3-70B-Instruct
datasets:
- HuggingFaceH4/ultrafeedback_binarized
model-index:
- name: Meta-Llama-3-70B-Instruct
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/statking/huggingface/runs/f61fvw8u)
# Meta-Llama-3-70B-Instruct

This model is a fine-tuned version of [meta-llama/Meta-Llama-3-70B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-70B-Instruct) on the HuggingFaceH4/ultrafeedback_binarized dataset.
It achieves the following results on the evaluation set:
- Loss: 1.2884
- Rewards/chosen: -0.0888
- Rewards/rejected: -0.1138
- Rewards/accuracies: 0.6132
- Rewards/margins: 0.0250
- Logps/rejected: -1.1382
- Logps/chosen: -0.8884
- Logits/rejected: -0.0033
- Logits/chosen: 0.2012
- Nll Loss: 1.2075
- Log Odds Ratio: -0.6278
- Log Odds Chosen: 0.3768

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- total_eval_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen | Nll Loss | Log Odds Ratio | Log Odds Chosen |
|:-------------:|:------:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:|:--------:|:--------------:|:---------------:|
| 1.2483        | 0.9999 | 3555 | 1.2884          | -0.0888        | -0.1138          | 0.6132             | 0.0250          | -1.1382        | -0.8884      | -0.0033         | 0.2012        | 1.2075   | -0.6278        | 0.3768          |


### Framework versions

- PEFT 0.11.1
- Transformers 4.41.0
- Pytorch 2.2.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1