Model Info (Interal): - Size: 7B - Dataset: The Pile v2 - `contaminated(P3) + lower_code(5%) + wiki(fixed) + books3(fixed & broken)` - Batch size (in tokens): 8M - Checkpoint Step: 69,000 (552B tokens) - Checkpoint path (AWS East): `/fsx/ckpts/7b_tok=neox_data=pilev2-recontam_lower-code_bs=8m_tp=4_pp=1_init=wang-small-init/global_step69000_hf` Notes: - Trained for 36k steps with incorrectly tokenized Books3 dataset (GPT-2 tokenizer instead of NeoX tokenizer) - tp=2 (not 4) W&B Report: https://stability.wandb.io/stability-llm/stable-lm/reports/StableLM-7B-alpha---Vmlldzo2MjA Usage: ```python import transformers model = transformers.AutoModelForCausalLM.from_pretrained("CarperAI/7b-alpha") tokenizer = transformers.AutoTokenizer.from_pretrained("EleutherAI/gpt-neox-20b") tokenizer.pad_token = tokenizer.eos_token tokenizer.paddding_side = "left" prompts = [ "User1: The dog sat on a man's lap and barked 3 times.\nUser2: How many times did the dog bark?" "Curious Person Question: A group of genetically identical individuals is called what?\nSmart Person Answer: a clone\n\nCurious Person Question: Who proposed the theory of evolution by natural selection?\nSmart Person Answer:" ] batch_encoding = tokenizer(prompts, return_tensors="pt", padding=True) print(f"Generating {len(prompts)} prompts...") samples = model.generate( **batch_encoding, max_new_tokens=64, temperature=0.0, do_sample=False, ) samples = tokenizer.batch_decode(samples, skip_special_tokens=True) for prompt, sample in zip(prompts, samples): print(f"Prompt: {prompt}\nSample: {sample}\n") ```