feat(modeling_stablelm_epoch.py): add support for AutoModelForSequenceClassification
dbab976
verified
# coding=utf-8 | |
# Copyright 2023 Stability AI, EleutherAI, and The HuggingFace Inc. team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# | |
# This code is based off the following work: | |
# https://github.com/huggingface/transformers/blob/main/src/transformers/models/llama/modeling_llama.py | |
# https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt_neox/modeling_gpt_neox.py | |
""" PyTorch StableLM Epoch model. """ | |
from typing import Optional, Tuple, Union, List | |
import math | |
import warnings | |
import torch | |
import torch.nn.functional as F | |
import torch.utils.checkpoint | |
from torch import nn | |
from torch.nn import CrossEntropyLoss, BCEWithLogitsLoss, MSELoss | |
from transformers.cache_utils import Cache | |
from transformers.modeling_outputs import ( | |
BaseModelOutputWithPast, | |
CausalLMOutputWithPast, | |
SequenceClassifierOutputWithPast, | |
) | |
from transformers.modeling_utils import PreTrainedModel | |
from transformers.utils import logging, is_flash_attn_greater_or_equal_2_10 | |
from .configuration_stablelm_epoch import StableLMEpochConfig | |
try: | |
from flash_attn import flash_attn_func, flash_attn_varlen_func | |
from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input | |
except: | |
flash_attn_func, flash_attn_varlen_func = None, None | |
index_first_axis, pad_input, unpad_input = None, None, None | |
logger = logging.get_logger(__name__) | |
# Copied from transformers.models.llama.modeling_llama._get_unpad_data | |
def _get_unpad_data(attention_mask): | |
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32) | |
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten() | |
max_seqlen_in_batch = seqlens_in_batch.max().item() | |
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0)) | |
return ( | |
indices, | |
cu_seqlens, | |
max_seqlen_in_batch, | |
) | |
# Copied from transformers.models.bart.modeling_bart._make_causal_mask | |
def _make_causal_mask( | |
input_ids_shape: torch.Size, | |
dtype: torch.dtype, | |
device: torch.device, | |
past_key_values_length: int = 0, | |
): | |
"""Make causal mask used for bi-directional self-attention.""" | |
batch_size, tgt_len = input_ids_shape | |
mask = torch.full((tgt_len, tgt_len), torch.finfo(torch.float16).min, device=device) | |
mask_cond = torch.arange(mask.size(-1), device=device) | |
mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0) | |
mask = mask.to(dtype) | |
if past_key_values_length > 0: | |
mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1) | |
return mask[None, None, :, :].expand(batch_size, 1, tgt_len, tgt_len + past_key_values_length) | |
# Copied from transformers.models.bart.modeling_bart._expand_mask | |
def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None): | |
"""Expands attention_mask from `[batch_size, seq_len]` to `[batch_size, 1, tgt_seq_len, src_seq_len]`.""" | |
batch_size, src_len = mask.size() | |
tgt_len = tgt_len if tgt_len is not None else src_len | |
expanded_mask = mask[:, None, None, :].expand(batch_size, 1, tgt_len, src_len).to(dtype) | |
inverted_mask = 1.0 - expanded_mask | |
return inverted_mask.masked_fill( | |
inverted_mask.to(torch.bool), torch.finfo(dtype).min | |
) | |
class RotaryEmbedding(nn.Module): | |
def __init__( | |
self, | |
dim: int, | |
max_position_embeddings: int, | |
base: int = 10_000, | |
device: Optional[torch.device] = None, | |
): | |
super().__init__() | |
self.dim = dim | |
self.max_position_embeddings = max_position_embeddings | |
self.base = base | |
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, device=device, dtype=torch.float32) / self.dim)) | |
self.register_buffer("inv_freq", inv_freq, persistent=False) | |
# Build here to make `torch.jit.trace` work. | |
self._set_cos_sin_cache( | |
seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype(), | |
) | |
def _set_cos_sin_cache(self, seq_len: int, device: torch.device, dtype: torch.dtype): | |
self.max_seq_len_cached = seq_len | |
t = torch.arange(self.max_seq_len_cached, device=device, dtype=torch.float32) | |
# Don't do einsum, it converts fp32 to fp16 under AMP | |
# freqs = torch.einsum("i,j->ij", t, self.inv_freq) | |
freqs = torch.outer(t, self.inv_freq) | |
# Different from paper, but it uses a different permutation in order to obtain the same calculation | |
emb = torch.cat((freqs, freqs), dim=-1) | |
self.register_buffer("cos_cached", emb.cos()[None, None, :, :].to(dtype), persistent=False) | |
self.register_buffer("sin_cached", emb.sin()[None, None, :, :].to(dtype), persistent=False) | |
def forward(self, x: torch.Tensor, seq_len: Optional[int] = None): | |
# x: [batch_size, num_heads, seq_len, head_size] | |
if seq_len > self.max_seq_len_cached: | |
self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=torch.get_default_dtype()) | |
return ( | |
self.cos_cached[:, :, :seq_len, ...].to(dtype=x.dtype), | |
self.sin_cached[:, :, :seq_len, ...].to(dtype=x.dtype), | |
) | |
def rotate_half(x: torch.Tensor): | |
"""Rotates half the hidden dims of the input.""" | |
x1, x2 = torch.chunk(x, 2, dim=-1) | |
return torch.cat((-x2, x1), dim=-1) | |
def apply_rotary_pos_emb(q, k, cos, sin, position_ids): | |
# The first two dimensions of cos and sin are always 1, so we can `squeeze` them. | |
cos = cos.squeeze(1).squeeze(0) # [seq_len, dim] | |
sin = sin.squeeze(1).squeeze(0) # [seq_len, dim] | |
cos = cos[position_ids].unsqueeze(1) # [batch_size, 1, seq_len, dim] | |
sin = sin[position_ids].unsqueeze(1) # [batch_size, 1, seq_len, dim] | |
q_embed = (q * cos) + (rotate_half(q) * sin) | |
k_embed = (k * cos) + (rotate_half(k) * sin) | |
return q_embed, k_embed | |
class MLP(nn.Module): | |
def __init__(self, config: StableLMEpochConfig): | |
super().__init__() | |
self.config = config | |
self.hidden_size = config.hidden_size | |
self.intermediate_size = config.intermediate_size | |
self.gate_proj = nn.Linear(config.hidden_size, config.intermediate_size, bias=False) | |
self.up_proj = nn.Linear(config.hidden_size, config.intermediate_size, bias=False) | |
self.down_proj = nn.Linear(config.intermediate_size, config.hidden_size, bias=False) | |
self.act_fn = nn.SiLU() | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x)) | |
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: | |
""" | |
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch, | |
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim) | |
""" | |
batch, num_key_value_heads, slen, head_dim = hidden_states.shape | |
if n_rep == 1: | |
return hidden_states | |
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim) | |
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim) | |
class Attention(nn.Module): | |
def __init__(self, config: StableLMEpochConfig): | |
super().__init__() | |
self.config = config | |
self.hidden_size = config.hidden_size | |
self.num_heads = config.num_attention_heads | |
self.head_dim = self.hidden_size // self.num_heads | |
self.num_key_value_heads = config.num_key_value_heads | |
self.num_key_value_groups = self.num_heads // self.num_key_value_heads | |
self.max_position_embeddings = config.max_position_embeddings | |
self.is_causal = True | |
if (self.head_dim * self.num_heads) != self.hidden_size: | |
raise ValueError( | |
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}" | |
f" and `num_heads`: {self.num_heads})." | |
) | |
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=config.use_qkv_bias) | |
self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.use_qkv_bias) | |
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.use_qkv_bias) | |
self.o_proj = nn.Linear(self.hidden_size, self.hidden_size, bias=False) | |
self._init_rope() | |
def _init_rope(self): | |
self.rotary_ndims = int(self.head_dim * self.config.rope_pct) | |
self.rotary_emb = RotaryEmbedding( | |
self.rotary_ndims, | |
max_position_embeddings=self.config.max_position_embeddings, | |
base=self.config.rope_theta, | |
) | |
def forward( | |
self, | |
hidden_states: torch.FloatTensor, | |
attention_mask: torch.FloatTensor, | |
position_ids: torch.LongTensor, | |
past_key_value: Optional[Tuple[torch.Tensor]] = None, | |
output_attentions: Optional[bool] = False, | |
use_cache: Optional[bool] = False, | |
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: | |
bsz, q_len, _ = hidden_states.size() | |
query_states = self.q_proj(hidden_states) | |
key_states = self.k_proj(hidden_states) | |
value_states = self.v_proj(hidden_states) | |
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) | |
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) | |
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) | |
query_rot = query_states[..., : self.rotary_ndims] | |
query_pass = query_states[..., self.rotary_ndims :] | |
key_rot = key_states[..., : self.rotary_ndims] | |
key_pass = key_states[..., self.rotary_ndims :] | |
kv_seq_len = key_states.shape[-2] | |
if past_key_value is not None: | |
kv_seq_len += past_key_value[0].shape[-2] | |
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len) | |
query_states, key_states = apply_rotary_pos_emb(query_rot, key_rot, cos, sin, position_ids) | |
# [batch_size, num_heads, seq_len, head_dim] | |
query_states = torch.cat((query_states, query_pass), dim=-1) | |
key_states = torch.cat((key_states, key_pass), dim=-1) | |
if past_key_value is not None: | |
# Reuse k, v, self_attention | |
key_states = torch.cat((past_key_value[0], key_states), dim=2) | |
value_states = torch.cat((past_key_value[1], value_states), dim=2) | |
past_key_value = (key_states, value_states) if use_cache else None | |
# Repeat k/v heads if n_kv_heads < n_heads | |
key_states = repeat_kv(key_states, self.num_key_value_groups) | |
value_states = repeat_kv(value_states, self.num_key_value_groups) | |
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim) | |
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len): | |
raise ValueError( | |
f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is" | |
f" {attn_weights.size()}" | |
) | |
if attention_mask is not None: | |
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len): | |
raise ValueError( | |
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}" | |
) | |
attn_weights = attn_weights + attention_mask | |
# Upcast attention to fp32 | |
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype) | |
attn_output = torch.matmul(attn_weights, value_states) | |
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim): | |
raise ValueError( | |
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is" | |
f" {attn_output.size()}" | |
) | |
# Merge heads | |
attn_output = attn_output.transpose(1, 2).contiguous() | |
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size) | |
# Final linear projection | |
attn_output = self.o_proj(attn_output) | |
if not output_attentions: | |
attn_weights = None | |
return attn_output, attn_weights, past_key_value | |
class FlashAttention2(Attention): | |
""" | |
Reference: https://github.com/huggingface/transformers/blob/5d36025ca13d05151b7a0c761e90d429c4644a30/src/transformers/models/llama/modeling_llama.py#L456 | |
""" | |
def __init__(self, *args, **kwargs): | |
super().__init__(*args, **kwargs) | |
# TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1. | |
# flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0. | |
# Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left). | |
self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10() | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
attention_mask: Optional[torch.LongTensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
past_key_value: Optional[Cache] = None, | |
output_attentions: bool = False, | |
use_cache: bool = False, | |
**kwargs, | |
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: | |
# FlashAttention2 attention does not support output_attentions | |
if "padding_mask" in kwargs: | |
warnings.warn( | |
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`" | |
) | |
# overwrite attention_mask with padding_mask | |
attention_mask = kwargs.pop("padding_mask") | |
output_attentions = False | |
bsz, q_len, _ = hidden_states.size() | |
query_states = self.q_proj(hidden_states) | |
key_states = self.k_proj(hidden_states) | |
value_states = self.v_proj(hidden_states) | |
# Flash attention requires the input to have the shape | |
# batch_size x seq_length x head_dim x hidden_dim | |
# therefore we just need to keep the original shape | |
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) | |
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) | |
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) | |
query_rot = query_states[..., : self.rotary_ndims] | |
query_pass = query_states[..., self.rotary_ndims :] | |
key_rot = key_states[..., : self.rotary_ndims] | |
key_pass = key_states[..., self.rotary_ndims :] | |
kv_seq_len = key_states.shape[-2] | |
if past_key_value is not None: | |
kv_seq_len += past_key_value[0].shape[-2] | |
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len) | |
query_states, key_states = apply_rotary_pos_emb(query_rot, key_rot, cos, sin, position_ids) | |
# [batch_size, num_heads, seq_len, head_dim] | |
query_states = torch.cat((query_states, query_pass), dim=-1) | |
key_states = torch.cat((key_states, key_pass), dim=-1) | |
if past_key_value is not None: | |
# Reuse k, v, self_attention | |
key_states = torch.cat((past_key_value[0], key_states), dim=2) | |
value_states = torch.cat((past_key_value[1], value_states), dim=2) | |
past_key_value = (key_states, value_states) if use_cache else None | |
# TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache | |
# to be able to avoid many of these transpose/reshape/view. | |
query_states = query_states.transpose(1, 2) | |
key_states = key_states.transpose(1, 2) | |
value_states = value_states.transpose(1, 2) | |
dropout_rate = self.attention_dropout if self.training else 0.0 | |
attn_output = self._flash_attention_forward( | |
query_states, key_states, value_states, attention_mask, q_len, dropout=dropout_rate | |
) | |
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous() | |
attn_output = self.o_proj(attn_output) | |
if not output_attentions: | |
attn_weights = None | |
return attn_output, attn_weights, past_key_value | |
def _flash_attention_forward( | |
self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None | |
): | |
""" | |
Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token | |
first unpad the input, then computes the attention scores and pad the final attention scores. | |
Args: | |
query_states (`torch.Tensor`): | |
Input query states to be passed to Flash Attention API | |
key_states (`torch.Tensor`): | |
Input key states to be passed to Flash Attention API | |
value_states (`torch.Tensor`): | |
Input value states to be passed to Flash Attention API | |
attention_mask (`torch.Tensor`): | |
The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the | |
position of padding tokens and 1 for the position of non-padding tokens. | |
dropout (`int`, *optional*): | |
Attention dropout | |
softmax_scale (`float`, *optional*): | |
The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim) | |
""" | |
if not self._flash_attn_uses_top_left_mask: | |
causal = self.is_causal | |
else: | |
# TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in FlashAttention2 __init__. | |
causal = self.is_causal and query_length != 1 | |
# Contains at least one padding token in the sequence | |
if attention_mask is not None: | |
batch_size = query_states.shape[0] | |
query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input( | |
query_states, key_states, value_states, attention_mask, query_length | |
) | |
cu_seqlens_q, cu_seqlens_k = cu_seq_lens | |
max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens | |
attn_output_unpad = flash_attn_varlen_func( | |
query_states, | |
key_states, | |
value_states, | |
cu_seqlens_q=cu_seqlens_q, | |
cu_seqlens_k=cu_seqlens_k, | |
max_seqlen_q=max_seqlen_in_batch_q, | |
max_seqlen_k=max_seqlen_in_batch_k, | |
dropout_p=dropout, | |
softmax_scale=softmax_scale, | |
causal=causal, | |
) | |
attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length) | |
else: | |
attn_output = flash_attn_func( | |
query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal | |
) | |
return attn_output | |
def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length): | |
indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask) | |
batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape | |
key_layer = index_first_axis( | |
key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k | |
) | |
value_layer = index_first_axis( | |
value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k | |
) | |
if query_length == kv_seq_len: | |
query_layer = index_first_axis( | |
query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim), indices_k | |
) | |
cu_seqlens_q = cu_seqlens_k | |
max_seqlen_in_batch_q = max_seqlen_in_batch_k | |
indices_q = indices_k | |
elif query_length == 1: | |
max_seqlen_in_batch_q = 1 | |
cu_seqlens_q = torch.arange( | |
batch_size + 1, dtype=torch.int32, device=query_layer.device | |
) # There is a memcpy here, that is very bad. | |
indices_q = cu_seqlens_q[:-1] | |
query_layer = query_layer.squeeze(1) | |
else: | |
# The -q_len: slice assumes left padding. | |
attention_mask = attention_mask[:, -query_length:] | |
query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask) | |
return ( | |
query_layer, | |
key_layer, | |
value_layer, | |
indices_q, | |
(cu_seqlens_q, cu_seqlens_k), | |
(max_seqlen_in_batch_q, max_seqlen_in_batch_k), | |
) | |
ATTENTION_CLASSES = { | |
"eager": Attention, | |
"flash_attention_2": FlashAttention2, | |
} | |
class DecoderLayer(nn.Module): | |
def __init__(self, config: StableLMEpochConfig): | |
super().__init__() | |
self.self_attn = ATTENTION_CLASSES[config._attn_implementation](config=config) | |
self.mlp = MLP(config) | |
self.input_layernorm = nn.LayerNorm(config.hidden_size, eps=config.norm_eps) | |
self.post_attention_layernorm = nn.LayerNorm(config.hidden_size, eps=config.norm_eps) | |
def forward( | |
self, | |
hidden_states: Optional[torch.FloatTensor], | |
attention_mask: Optional[torch.FloatTensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
past_key_value: Optional[Tuple[torch.Tensor]] = None, | |
output_attentions: Optional[bool] = False, | |
use_cache: Optional[bool] = False, | |
) -> Union[Tuple[torch.Tensor], Optional[Tuple[torch.Tensor, Tuple[torch.FloatTensor, ...]]]]: | |
residual = hidden_states | |
hidden_states = self.input_layernorm(hidden_states) | |
# Self Attention | |
hidden_states, self_attn_weights, present_key_value = self.self_attn( | |
hidden_states=hidden_states, | |
attention_mask=attention_mask, | |
position_ids=position_ids, | |
past_key_value=past_key_value, | |
output_attentions=output_attentions, | |
use_cache=use_cache, | |
) | |
hidden_states = residual + hidden_states | |
# Fully Connected | |
residual = hidden_states | |
hidden_states = self.post_attention_layernorm(hidden_states) | |
hidden_states = self.mlp(hidden_states) | |
hidden_states = residual + hidden_states | |
outputs = (hidden_states,) | |
if output_attentions: | |
outputs += (self_attn_weights,) | |
if use_cache: | |
outputs += (present_key_value,) | |
return outputs | |
class StableLMEpochPreTrainedModel(PreTrainedModel): | |
"""An abstract class to handle weights initialization and a simple interface | |
for downloading and loading pretrained models. | |
""" | |
config_class = StableLMEpochConfig | |
base_model_prefix = "transformer" | |
supports_gradient_checkpointing = True | |
_no_split_modules = ["DecoderLayer"] | |
_skip_keys_device_placement = "past_key_values" | |
_supports_flash_attn_2 = True | |
def _init_weights(self, module: nn.Module): | |
"""Initialize the weights""" | |
if isinstance(module, nn.Linear): | |
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) | |
if module.bias is not None: | |
module.bias.data.zero_() | |
elif isinstance(module, nn.Embedding): | |
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) | |
if module.padding_idx is not None: | |
module.weight.data[module.padding_idx].zero_() | |
elif isinstance(module, nn.LayerNorm): | |
module.bias.data.zero_() | |
module.weight.data.fill_(1.0) | |
def _set_gradient_checkpointing(self, module: nn.Module, value=False): | |
if isinstance(module, StableLMEpochModel): | |
module.gradient_checkpointing = value | |
class StableLMEpochModel(StableLMEpochPreTrainedModel): | |
def __init__(self, config: StableLMEpochConfig): | |
super().__init__(config) | |
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, config.pad_token_id) | |
self.layers = nn.ModuleList([DecoderLayer(config) for _ in range(config.num_hidden_layers)]) | |
self.norm = nn.LayerNorm(config.hidden_size, eps=config.norm_eps) | |
self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2" | |
self.gradient_checkpointing = False | |
# Initialize weights and apply final processing | |
self.post_init() | |
def get_input_embeddings(self): | |
return self.embed_tokens | |
def set_input_embeddings(self, value: nn.Module): | |
self.embed_tokens = value | |
# Copied from transformers.models.bart.modeling_bart.BartDecoder._prepare_decoder_attention_mask | |
def _prepare_decoder_attention_mask( | |
self, | |
attention_mask: torch.Tensor, | |
input_shape: torch.Size, | |
inputs_embeds: torch.Tensor, | |
past_key_values_length: int, | |
): | |
# Create causal mask | |
# [batch_size, seq_len] -> [batch_size, 1, tgt_seq_len, src_seq_len] | |
combined_attention_mask = None | |
if input_shape[-1] > 1: | |
combined_attention_mask = _make_causal_mask( | |
input_shape, | |
inputs_embeds.dtype, | |
device=inputs_embeds.device, | |
past_key_values_length=past_key_values_length, | |
) | |
if attention_mask is not None: | |
# [batch_size, seq_len] -> [batch_size, 1, tgt_seq_len, src_seq_len] | |
expanded_attn_mask = _expand_mask( | |
attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1] | |
).to(inputs_embeds.device) | |
combined_attention_mask = expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask | |
return combined_attention_mask | |
def forward( | |
self, | |
input_ids: Optional[torch.LongTensor] = None, | |
attention_mask: Optional[torch.FloatTensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, | |
inputs_embeds: Optional[torch.FloatTensor] = None, | |
use_cache: Optional[bool] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple, BaseModelOutputWithPast]: | |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
output_hidden_states = output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
use_cache = use_cache if use_cache is not None else self.config.use_cache | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
# Retrieve input_ids and inputs_embeds | |
if input_ids is not None and inputs_embeds is not None: | |
raise ValueError( | |
"You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time" | |
) | |
elif input_ids is not None: | |
batch_size, seq_length = input_ids.shape | |
elif inputs_embeds is not None: | |
batch_size, seq_length, _ = inputs_embeds.shape | |
else: | |
raise ValueError( | |
"You have to specify either decoder_input_ids or decoder_inputs_embeds" | |
) | |
seq_length_with_past = seq_length | |
past_key_values_length = 0 | |
if position_ids is None: | |
device = input_ids.device if input_ids is not None else inputs_embeds.device | |
position_ids = torch.arange( | |
past_key_values_length, | |
seq_length + past_key_values_length, | |
dtype=torch.long, | |
device=device, | |
) | |
position_ids = position_ids.unsqueeze(0).view(-1, seq_length) | |
else: | |
position_ids = position_ids.view(-1, seq_length).long() | |
if inputs_embeds is None: | |
inputs_embeds = self.embed_tokens(input_ids) | |
# Embed positions | |
if self._use_flash_attention_2: | |
# 2d mask is passed through the layers | |
attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None | |
else: | |
if attention_mask is None: | |
attention_mask = torch.ones( | |
(batch_size, seq_length_with_past), | |
dtype=torch.bool, | |
device=inputs_embeds.device, | |
) | |
attention_mask = self._prepare_decoder_attention_mask( | |
attention_mask, | |
(batch_size, seq_length), | |
inputs_embeds, | |
past_key_values_length, | |
) | |
hidden_states = inputs_embeds | |
if self.gradient_checkpointing and self.training: | |
if use_cache: | |
logger.warning( | |
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." | |
) | |
use_cache = False | |
# Decoder layers | |
all_hidden_states = () if output_hidden_states else None | |
all_self_attns = () if output_attentions else None | |
next_decoder_cache = () if use_cache else None | |
for idx, decoder_layer in enumerate(self.layers): | |
if output_hidden_states: | |
all_hidden_states += (hidden_states,) | |
past_key_value = ( | |
past_key_values[idx] if past_key_values is not None else None | |
) | |
if self.gradient_checkpointing and self.training: | |
def create_custom_forward(module): | |
def custom_forward(*inputs): | |
# None for past_key_value | |
return module(*inputs, past_key_value, output_attentions) | |
return custom_forward | |
layer_outputs = torch.utils.checkpoint.checkpoint( | |
create_custom_forward(decoder_layer), | |
hidden_states, | |
attention_mask, | |
position_ids, | |
) | |
else: | |
layer_outputs = decoder_layer( | |
hidden_states, | |
attention_mask=attention_mask, | |
position_ids=position_ids, | |
past_key_value=past_key_value, | |
output_attentions=output_attentions, | |
use_cache=use_cache, | |
) | |
hidden_states = layer_outputs[0] | |
if use_cache: | |
next_decoder_cache += (layer_outputs[2 if output_attentions else 1],) | |
if output_attentions: | |
all_self_attns += (layer_outputs[1],) | |
hidden_states = self.norm(hidden_states) | |
# Add hidden states from the last decoder layer | |
if output_hidden_states: | |
all_hidden_states += (hidden_states,) | |
next_cache = next_decoder_cache if use_cache else None | |
if not return_dict: | |
return tuple( | |
v | |
for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] | |
if v is not None | |
) | |
return BaseModelOutputWithPast( | |
last_hidden_state=hidden_states, | |
past_key_values=next_cache, | |
hidden_states=all_hidden_states, | |
attentions=all_self_attns, | |
) | |
class StableLMEpochForCausalLM(StableLMEpochPreTrainedModel): | |
_tied_weights_keys = ["lm_head.weight"] | |
def __init__(self, config: StableLMEpochConfig): | |
super().__init__(config) | |
self.model = StableLMEpochModel(config) | |
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) | |
# Initialize weights and apply final processing | |
self.post_init() | |
def get_input_embeddings(self): | |
return self.model.embed_tokens | |
def set_input_embeddings(self, value): | |
self.model.embed_tokens = value | |
def get_output_embeddings(self): | |
return self.lm_head | |
def set_output_embeddings(self, new_embeddings: nn.Module): | |
self.lm_head = new_embeddings | |
def get_decoder(self): | |
return self.model | |
def set_decoder(self, decoder): | |
self.model = decoder | |
def forward( | |
self, | |
input_ids: Optional[torch.LongTensor] = None, | |
attention_mask: Optional[torch.FloatTensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, | |
inputs_embeds: Optional[torch.FloatTensor] = None, | |
labels: Optional[torch.LongTensor] = None, | |
use_cache: Optional[bool] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple, CausalLMOutputWithPast]: | |
output_attentions = ( | |
output_attentions | |
if output_attentions is not None | |
else self.config.output_attentions | |
) | |
output_hidden_states = ( | |
output_hidden_states | |
if output_hidden_states is not None | |
else self.config.output_hidden_states | |
) | |
return_dict = ( | |
return_dict if return_dict is not None else self.config.use_return_dict | |
) | |
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn) | |
outputs = self.model( | |
input_ids, | |
attention_mask=attention_mask, | |
position_ids=position_ids, | |
past_key_values=past_key_values, | |
inputs_embeds=inputs_embeds, | |
use_cache=use_cache, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
hidden_states = outputs[0] | |
logits = self.lm_head(hidden_states).float() | |
loss = None | |
if labels is not None: | |
# Shift so that tokens < n predict n | |
shift_logits = logits[..., :-1, :].contiguous() | |
shift_labels = labels[..., 1:].contiguous() | |
# Flatten the tokens | |
loss_fct = CrossEntropyLoss() | |
shift_logits = shift_logits.view(-1, self.config.vocab_size) | |
shift_labels = shift_labels.view(-1) | |
# Enable model parallelism | |
shift_labels = shift_labels.to(shift_logits.device) | |
loss = loss_fct(shift_logits, shift_labels) | |
if not return_dict: | |
output = (logits,) + outputs[1:] | |
return (loss,) + output if loss is not None else output | |
return CausalLMOutputWithPast( | |
loss=loss, | |
logits=logits, | |
past_key_values=outputs.past_key_values, | |
hidden_states=outputs.hidden_states, | |
attentions=outputs.attentions, | |
) | |
def prepare_inputs_for_generation( | |
self, | |
input_ids, | |
past_key_values: Optional[torch.Tensor] = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
inputs_embeds: Optional[torch.Tensor] = None, | |
**kwargs, | |
): | |
# Trim decoder_input_ids if past is used | |
if past_key_values is not None: | |
past_length = past_key_values[0][0].shape[2] | |
# Some generation methods already pass only the last input ID | |
if input_ids.shape[1] > past_length: | |
remove_prefix_length = past_length | |
else: | |
# Default to old behavior: keep only final ID | |
remove_prefix_length = input_ids.shape[1] - 1 | |
input_ids = input_ids[:, remove_prefix_length:] | |
position_ids = kwargs.get("position_ids", None) | |
if attention_mask is not None and position_ids is None: | |
# Create position_ids on the fly for batch generation | |
position_ids = attention_mask.long().cumsum(-1) - 1 | |
position_ids.masked_fill_(attention_mask == 0, 1) | |
if past_key_values: | |
position_ids = position_ids[:, -1].unsqueeze(-1) | |
# If `inputs_embeds` are passed, we only want to use them in the 1st generation step | |
if inputs_embeds is not None and past_key_values is None: | |
model_inputs = {"inputs_embeds": inputs_embeds} | |
else: | |
model_inputs = {"input_ids": input_ids} | |
model_inputs.update( | |
{ | |
"attention_mask": attention_mask, | |
"past_key_values": past_key_values, | |
"use_cache": kwargs.get("use_cache"), | |
"position_ids": position_ids, | |
} | |
) | |
return model_inputs | |
def _reorder_cache(past_key_values, beam_idx): | |
reordered_past = () | |
for layer_past in past_key_values: | |
reordered_past += ( | |
tuple( | |
past_state.index_select(0, beam_idx.to(past_state.device)) | |
for past_state in layer_past | |
), | |
) | |
return reordered_past | |
class StableLMEpochForSequenceClassification(StableLMEpochPreTrainedModel): | |
_keys_to_ignore_on_load_missing = [r"lm_head.weight"] | |
def __init__(self, config): | |
super().__init__(config) | |
self.num_labels = config.num_labels | |
self.model = StableLMEpochModel(config) | |
self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False) | |
# Initialize weights and apply final processing | |
self.post_init() | |
def get_input_embeddings(self): | |
return self.model.embed_tokens | |
def set_input_embeddings(self, value): | |
self.model.embed_tokens = value | |
def forward( | |
self, | |
input_ids: torch.LongTensor = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
past_key_values: Optional[List[torch.FloatTensor]] = None, | |
inputs_embeds: Optional[torch.FloatTensor] = None, | |
labels: Optional[torch.LongTensor] = None, | |
use_cache: Optional[bool] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple, SequenceClassifierOutputWithPast]: | |
r""" | |
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): | |
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., | |
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If | |
`config.num_labels > 1` a classification loss is computed (Cross-Entropy). | |
""" | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
transformer_outputs = self.model( | |
input_ids, | |
attention_mask=attention_mask, | |
position_ids=position_ids, | |
past_key_values=past_key_values, | |
inputs_embeds=inputs_embeds, | |
use_cache=use_cache, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
hidden_states = transformer_outputs[0] | |
logits = self.score(hidden_states) | |
if input_ids is not None: | |
batch_size = input_ids.shape[0] | |
else: | |
batch_size = inputs_embeds.shape[0] | |
if self.config.pad_token_id is None and batch_size != 1: | |
raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.") | |
if self.config.pad_token_id is None: | |
sequence_lengths = -1 | |
else: | |
if input_ids is not None: | |
sequence_lengths = (torch.ne(input_ids, self.config.pad_token_id).sum(-1) - 1).to(logits.device) | |
else: | |
sequence_lengths = -1 | |
pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths] | |
loss = None | |
if labels is not None: | |
labels = labels.to(logits.device) | |
if self.config.problem_type is None: | |
if self.num_labels == 1: | |
self.config.problem_type = "regression" | |
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): | |
self.config.problem_type = "single_label_classification" | |
else: | |
self.config.problem_type = "multi_label_classification" | |
if self.config.problem_type == "regression": | |
loss_fct = MSELoss() | |
if self.num_labels == 1: | |
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze()) | |
else: | |
loss = loss_fct(pooled_logits, labels) | |
elif self.config.problem_type == "single_label_classification": | |
loss_fct = CrossEntropyLoss() | |
loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1)) | |
elif self.config.problem_type == "multi_label_classification": | |
loss_fct = BCEWithLogitsLoss() | |
loss = loss_fct(pooled_logits, labels) | |
if not return_dict: | |
output = (pooled_logits,) + transformer_outputs[1:] | |
return ((loss,) + output) if loss is not None else output | |
return SequenceClassifierOutputWithPast( | |
loss=loss, | |
logits=pooled_logits, | |
past_key_values=transformer_outputs.past_key_values, | |
hidden_states=transformer_outputs.hidden_states, | |
attentions=transformer_outputs.attentions, | |
) | |
StableLMEpochConfig.register_for_auto_class() | |
StableLMEpochForCausalLM.register_for_auto_class("AutoModelForCausalLM") | |
StableLMEpochForSequenceClassification.register_for_auto_class("AutoModelForSequenceClassification") |