sravan-gorugantu commited on
Commit
f34ad6d
1 Parent(s): 233dcc4

End of training

Browse files
Files changed (1) hide show
  1. README.md +82 -0
README.md ADDED
@@ -0,0 +1,82 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: ntu-spml/distilhubert
4
+ tags:
5
+ - generated_from_trainer
6
+ datasets:
7
+ - audiofolder
8
+ metrics:
9
+ - accuracy
10
+ model-index:
11
+ - name: model2024-05-24
12
+ results:
13
+ - task:
14
+ name: Audio Classification
15
+ type: audio-classification
16
+ dataset:
17
+ name: audiofolder
18
+ type: audiofolder
19
+ config: default
20
+ split: train
21
+ args: default
22
+ metrics:
23
+ - name: Accuracy
24
+ type: accuracy
25
+ value: 0.965810121118249
26
+ ---
27
+
28
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
29
+ should probably proofread and complete it, then remove this comment. -->
30
+
31
+ # model2024-05-24
32
+
33
+ This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the audiofolder dataset.
34
+ It achieves the following results on the evaluation set:
35
+ - Loss: 0.0906
36
+ - Accuracy: 0.9658
37
+
38
+ ## Model description
39
+
40
+ More information needed
41
+
42
+ ## Intended uses & limitations
43
+
44
+ More information needed
45
+
46
+ ## Training and evaluation data
47
+
48
+ More information needed
49
+
50
+ ## Training procedure
51
+
52
+ ### Training hyperparameters
53
+
54
+ The following hyperparameters were used during training:
55
+ - learning_rate: 3e-05
56
+ - train_batch_size: 32
57
+ - eval_batch_size: 32
58
+ - seed: 42
59
+ - gradient_accumulation_steps: 4
60
+ - total_train_batch_size: 128
61
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
62
+ - lr_scheduler_type: linear
63
+ - lr_scheduler_warmup_ratio: 0.1
64
+ - num_epochs: 5
65
+
66
+ ### Training results
67
+
68
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
69
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
70
+ | 0.2199 | 1.0 | 615 | 0.1805 | 0.9320 |
71
+ | 0.179 | 2.0 | 1231 | 0.1230 | 0.9534 |
72
+ | 0.1089 | 3.0 | 1846 | 0.1019 | 0.9616 |
73
+ | 0.1152 | 4.0 | 2462 | 0.0939 | 0.9645 |
74
+ | 0.0811 | 5.0 | 3075 | 0.0906 | 0.9658 |
75
+
76
+
77
+ ### Framework versions
78
+
79
+ - Transformers 4.38.1
80
+ - Pytorch 2.1.2+cu121
81
+ - Datasets 2.16.1
82
+ - Tokenizers 0.15.2