--- license: apache-2.0 base_model: ntu-spml/distilhubert tags: - generated_from_trainer datasets: - audiofolder metrics: - accuracy model-index: - name: model2024-05-23 results: - task: name: Audio Classification type: audio-classification dataset: name: audiofolder type: audiofolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.9622115215221093 --- # model2024-05-23 This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the audiofolder dataset. It achieves the following results on the evaluation set: - Loss: 0.1202 - Accuracy: 0.9622 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.1929 | 1.0 | 532 | 0.1905 | 0.9402 | | 0.1862 | 2.0 | 1064 | 0.1467 | 0.9523 | | 0.1205 | 3.0 | 1596 | 0.1325 | 0.9578 | | 0.1128 | 4.0 | 2129 | 0.1279 | 0.9598 | | 0.1176 | 5.0 | 2660 | 0.1202 | 0.9622 | ### Framework versions - Transformers 4.38.1 - Pytorch 2.1.2+cu121 - Datasets 2.16.1 - Tokenizers 0.15.2