--- license: mit base_model: microsoft/MiniLM-L12-H384-uncased tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: minilm-imdb results: - task: name: text-classification type: text-classification dataset: name: imdb type: imdb config: default split: train args: default metrics: - name: accuracy type: accuracy value: 0.922880 - name: f1 type: f1 value: 0.922831 datasets: - imdb language: - en pipeline_tag: text-classification --- # minilm-imdb This model is a fine-tuned version of [microsoft/MiniLM-L12-H384-uncased](https://huggingface.co/microsoft/MiniLM-L12-H384-uncased) on imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.2403 - Accuracy: 0.9229 - F1: 0.9228 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 64 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.1511 | 1.0 | 293 | 0.2212 | 0.9234 | 0.9229 | | 0.1047 | 2.0 | 586 | 0.2211 | 0.9230 | 0.9217 | | 0.1008 | 3.0 | 879 | 0.2403 | 0.9229 | 0.9228 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.0 - Tokenizers 0.15.0