--- license: apache-2.0 base_model: ntu-spml/distilhubert tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: wav2vec2-xlsr-finetuned-gtzan results: - task: name: Audio Classification type: audio-classification dataset: name: GTZAN type: marsyas/gtzan config: all split: train args: all metrics: - name: Accuracy type: accuracy value: 0.88 --- # wav2vec2-xlsr-finetuned-gtzan This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.4910 - Accuracy: 0.88 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 8 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.1164 | 1.0 | 112 | 1.8109 | 0.41 | | 1.4074 | 2.0 | 225 | 1.3693 | 0.52 | | 1.3318 | 3.0 | 337 | 1.0215 | 0.67 | | 0.753 | 4.0 | 450 | 0.7795 | 0.76 | | 0.6883 | 5.0 | 562 | 0.7275 | 0.8 | | 0.3683 | 6.0 | 675 | 0.5863 | 0.82 | | 0.2497 | 7.0 | 787 | 0.4621 | 0.89 | | 0.4483 | 7.96 | 896 | 0.4910 | 0.88 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0