Spaces:
Paused
Paused
import torch | |
import numpy as np | |
import soundfile as sf | |
from transformers import pipeline | |
from transformers import BarkModel | |
from transformers import AutoProcessor | |
device = "cuda:0" if torch.cuda.is_available() else "cpu" | |
pipe = pipeline( | |
"automatic-speech-recognition", model="openai/whisper-large-v2", device=device | |
) | |
label = pipeline("audio-classification", model="facebook/mms-lid-126", device=device) | |
processor = AutoProcessor.from_pretrained("suno/bark") | |
model = BarkModel.from_pretrained("suno/bark") | |
model = model.to(device) | |
synthesised_rate = model.generation_config.sample_rate | |
def translate(audio_file): | |
audio, sampling_rate = sf.read(audio_file) | |
outputs = pipe(audio, max_new_tokens=256, generate_kwargs={"task": "transcribe","language":"chinese"}) | |
language_prediction = label({"array": audio, "sampling_rate": sampling_rate}) | |
label_outputs = {} | |
for pred in language_prediction: | |
label_outputs[pred["label"]] = pred["score"] | |
return outputs["text"],label_outputs | |
def synthesise(text_prompt,voice_preset="v2/zh_speaker_1"): | |
inputs = processor(text_prompt, voice_preset=voice_preset) | |
speech_output = model.generate(**inputs.to(device),pad_token_id=10000) | |
return speech_output | |
def speech_to_speech_translation(audio,voice_preset="v2/zh_speaker_1"): | |
translated_text, label_outputs= translate(audio) | |
synthesised_speech = synthesise(translated_text,voice_preset) | |
synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16) | |
return (synthesised_rate , synthesised_speech.T),translated_text,label_outputs | |
title = "外国话转普通话" | |
description = """ | |
作为[Hugging Face Audio course](https://github.com/danfouer/HFAudioCourse) 的结课大作业,本演示调用了三个自然语言处理的大模型,一个用于将外国话翻译成中文,一个用于判断说的哪个国家的话,一个用于将中文转成普通话语音输出。演示同时支持语音上传和麦克风输入,转换速度比较慢因为租不起GPU的服务器(支出增加20倍),建议您通过已经缓存Examples体验效果。欢迎添加我的微信号:ESGGTP 与我的平行人交流。 | |
![Cascaded STST](https://huggingface.co/datasets/huggingface-course/audio-course-images/resolve/main/s2st_cascaded.png "Diagram of cascaded speech to speech translation") | |
""" | |
examples = [ | |
# ["./en.mp3", None], | |
# ["./de.mp3", None], | |
["./fr.mp3", None], | |
["./it.mp3", None], | |
["./nl.mp3", None], | |
["./fi.mp3", None], | |
# ["./cs.mp3", None], | |
# ["./pl.mp3", None], | |
] | |
import gradio as gr | |
demo = gr.Blocks() | |
file_transcribe = gr.Interface( | |
fn=speech_to_speech_translation, | |
inputs=gr.Audio(source="upload", type="filepath"), | |
outputs=[ | |
gr.Audio(label="Generated Speech", type="numpy"), | |
gr.Text(label="Transcription"), | |
gr.Label(label="Language prediction"), | |
], | |
title=title, | |
description=description, | |
examples=examples, | |
) | |
mic_transcribe = gr.Interface( | |
fn=speech_to_speech_translation, | |
inputs=gr.Audio(source="microphone", type="filepath"), | |
outputs=[ | |
gr.Audio(label="Generated Speech", type="numpy"), | |
gr.Text(label="Transcription"), | |
gr.Label(label="Language prediction"), | |
], | |
title=title, | |
description=description, | |
) | |
with demo: | |
gr.TabbedInterface( | |
[file_transcribe, mic_transcribe], | |
["Transcribe Audio File", "Transcribe Microphone"], | |
) | |
demo.launch() | |
########################################################################################################################### | |
# import torch | |
# import numpy as np | |
# import soundfile as sf | |
# from transformers import pipeline | |
# from transformers import BarkModel | |
# from transformers import AutoProcessor | |
# device = "cuda:0" if torch.cuda.is_available() else "cpu" | |
# pipe = pipeline( | |
# "automatic-speech-recognition", model="openai/whisper-large-v2", device=device | |
# ) | |
# #label = pipeline("audio-classification", model="facebook/mms-lid-126", device=device) | |
# processor = AutoProcessor.from_pretrained("suno/bark") | |
# model = BarkModel.from_pretrained("suno/bark") | |
# model = model.to(device) | |
# synthesised_rate = model.generation_config.sample_rate | |
# def translate(audio_file): | |
# # audio, sampling_rate = sf.read(audio_file) | |
# outputs = pipe(audio_file, max_new_tokens=256, generate_kwargs={"task": "transcribe","language":"chinese"}) | |
# # language_prediction = label({"array": audio, "sampling_rate": sampling_rate}) | |
# # label_outputs = {} | |
# # for pred in language_prediction: | |
# # label_outputs[pred["label"]] = pred["score"] | |
# return outputs["text"]#,label_outputs | |
# def synthesise(text_prompt,voice_preset="v2/zh_speaker_1"): | |
# inputs = processor(text_prompt, voice_preset=voice_preset) | |
# speech_output = model.generate(**inputs.to(device),pad_token_id=10000) | |
# return speech_output | |
# def speech_to_speech_translation(audio,voice_preset="v2/zh_speaker_1"): | |
# #translated_text, label_outputs= translate(audio) | |
# translated_text = translate(audio) | |
# synthesised_speech = synthesise(translated_text,voice_preset) | |
# synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16) | |
# return (synthesised_rate , synthesised_speech.T),translated_text#,label_outputs | |
# title = "外国话转中文话" | |
# description = """ | |
# 作为[Hugging Face Audio course](https://github.com/danfouer/HFAudioCourse) 的结课大作业,本演示调用了三个自然语言处理的大模型,一个用于将外国话翻译成中文,一个用于判断说的哪个国家的话(CPU演示太慢暂时先去掉了),一个用于将中文转成语音输出。演示同时支持语音上传和麦克风输入,转换速度比较慢因为租不起GPU的服务器(支出增加20倍),建议您通过已经缓存Examples体验效果。欢迎添加我的微信号:ESGGTP 与我的平行人交流。 | |
# ![Cascaded STST](https://huggingface.co/datasets/huggingface-course/audio-course-images/resolve/main/s2st_cascaded.png "Diagram of cascaded speech to speech translation") | |
# """ | |
# examples = [ | |
# ["./en.mp3", None], | |
# ["./de.mp3", None], | |
# ["./fr.mp3", None], | |
# ["./it.mp3", None], | |
# ["./nl.mp3", None], | |
# ["./fi.mp3", None], | |
# ["./cs.mp3", None], | |
# ["./pl.mp3", None], | |
# ] | |
# import gradio as gr | |
# demo = gr.Blocks() | |
# file_transcribe = gr.Interface( | |
# fn=speech_to_speech_translation, | |
# inputs=gr.Audio(source="upload", type="filepath"), | |
# outputs=[ | |
# gr.Audio(label="Generated Speech", type="numpy"), | |
# gr.Text(label="Transcription"), | |
# # gr.Label(label="Language prediction"), | |
# ], | |
# title=title, | |
# description=description, | |
# examples=examples, | |
# ) | |
# mic_transcribe = gr.Interface( | |
# fn=speech_to_speech_translation, | |
# inputs=gr.Audio(source="microphone", type="filepath"), | |
# outputs=[ | |
# gr.Audio(label="Generated Speech", type="numpy"), | |
# gr.Text(label="Transcription"), | |
# # gr.Label(label="Language prediction"), | |
# ], | |
# title=title, | |
# description=description, | |
# ) | |
# with demo: | |
# gr.TabbedInterface( | |
# [file_transcribe, mic_transcribe], | |
# ["Transcribe Audio File", "Transcribe Microphone"], | |
# ) | |
# demo.launch() |