Spaces:
Running
Running
added application file along with data
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- app.py +1231 -0
- db/2d/2d-how-many/embeddings.pkl +3 -0
- db/2d/2d-how-many/expanded_data.csv +0 -0
- db/2d/2d-how-many/gt.pkl +3 -0
- db/2d/2d-how-many/instructblip_vicuna13b_surprise.pkl +3 -0
- db/2d/2d-how-many/instructblip_vicuna7b_surprise.pkl +3 -0
- db/2d/2d-how-many/llava15_13b_surprise.pkl +3 -0
- db/2d/2d-how-many/llava15_7b_surprise.pkl +3 -0
- db/2d/2d-how-many/merged_data.csv +0 -0
- db/2d/2d-how-many/path.json +0 -0
- db/2d/2d-how-many/qa.pkl +3 -0
- db/2d/2d-how-many/qwenvl_chat_surprise.pkl +3 -0
- db/2d/2d-how-many/qwenvl_surprise.pkl +3 -0
- db/2d/2d-how-many/task_plan.pkl +3 -0
- db/2d/2d-what-attribute/embeddings.pkl +3 -0
- db/2d/2d-what-attribute/expanded_data.csv +0 -0
- db/2d/2d-what-attribute/gt.pkl +3 -0
- db/2d/2d-what-attribute/instructblip_vicuna13b_surprise.pkl +3 -0
- db/2d/2d-what-attribute/instructblip_vicuna7b_surprise.pkl +3 -0
- db/2d/2d-what-attribute/llava15_13b_surprise.pkl +3 -0
- db/2d/2d-what-attribute/llava15_7b_surprise.pkl +3 -0
- db/2d/2d-what-attribute/merged_data.csv +0 -0
- db/2d/2d-what-attribute/path.json +0 -0
- db/2d/2d-what-attribute/qa.pkl +3 -0
- db/2d/2d-what-attribute/qwenvl_chat_surprise.pkl +3 -0
- db/2d/2d-what-attribute/qwenvl_surprise.pkl +3 -0
- db/2d/2d-what-attribute/task_plan.pkl +3 -0
- db/2d/2d-what/embeddings.pkl +3 -0
- db/2d/2d-what/expanded_data.csv +0 -0
- db/2d/2d-what/gt.pkl +3 -0
- db/2d/2d-what/instructblip_vicuna13b_surprise.pkl +3 -0
- db/2d/2d-what/instructblip_vicuna7b_surprise.pkl +3 -0
- db/2d/2d-what/llava15_13b_surprise.pkl +3 -0
- db/2d/2d-what/llava15_7b_surprise.pkl +3 -0
- db/2d/2d-what/merged_data.csv +0 -0
- db/2d/2d-what/path.json +0 -0
- db/2d/2d-what/qa.pkl +3 -0
- db/2d/2d-what/qwenvl_chat_surprise.pkl +3 -0
- db/2d/2d-what/qwenvl_surprise.pkl +3 -0
- db/2d/2d-what/task_plan.pkl +3 -0
- db/2d/2d-where-attribute/embeddings.pkl +3 -0
- db/2d/2d-where-attribute/expanded_data.csv +0 -0
- db/2d/2d-where-attribute/gt.pkl +3 -0
- db/2d/2d-where-attribute/instructblip_vicuna13b_surprise.pkl +3 -0
- db/2d/2d-where-attribute/instructblip_vicuna7b_surprise.pkl +3 -0
- db/2d/2d-where-attribute/llava15_13b_surprise.pkl +3 -0
- db/2d/2d-where-attribute/llava15_7b_surprise.pkl +3 -0
- db/2d/2d-where-attribute/merged_data.csv +0 -0
- db/2d/2d-where-attribute/path.json +0 -0
- db/2d/2d-where-attribute/qa.pkl +3 -0
app.py
ADDED
@@ -0,0 +1,1231 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
import numpy as np
|
3 |
+
import os
|
4 |
+
from copy import deepcopy
|
5 |
+
|
6 |
+
import gradio as gr
|
7 |
+
import altair as alt
|
8 |
+
alt.data_transformers.enable("vegafusion")
|
9 |
+
from dynabench.task_evaluator import *
|
10 |
+
|
11 |
+
BASE_DIR = "../db"
|
12 |
+
MODELS = ['qwenvl-chat', 'qwenvl', 'llava15-7b', 'llava15-13b', 'instructblip-vicuna13b', 'instructblip-vicuna7b']
|
13 |
+
VIDEO_MODELS = ['video-chat2-7b','video-llama2-7b','video-llama2-13b','chat-univi-7b','chat-univi-13b','video-llava-7b','video-chatgpt-7b']
|
14 |
+
domains = ["imageqa-2d-sticker", "imageqa-3d-tabletop", "imageqa-scene-graph", "videoqa-3d-tabletop", "videoqa-scene-graph"]
|
15 |
+
domain2folder = {"imageqa-2d-sticker": "2d",
|
16 |
+
"imageqa-3d-tabletop": "3d",
|
17 |
+
"imageqa-scene-graph": "sg",
|
18 |
+
"videoqa-3d-tabletop": "video-3d",
|
19 |
+
"videoqa-scene-graph": "video-sg",
|
20 |
+
None: '2d'}
|
21 |
+
|
22 |
+
def update_partition_and_models(domain):
|
23 |
+
domain = domain2folder[domain]
|
24 |
+
path = f"{BASE_DIR}/{domain}"
|
25 |
+
|
26 |
+
|
27 |
+
if os.path.exists(path):
|
28 |
+
partitions = list_directories(path)
|
29 |
+
if domain.find("video") > -1:
|
30 |
+
model = gr.Dropdown(VIDEO_MODELS, value=VIDEO_MODELS[0], label="model")
|
31 |
+
else:
|
32 |
+
model = gr.Dropdown(MODELS, value=MODELS[0], label="model")
|
33 |
+
|
34 |
+
partition = gr.Dropdown(partitions, value=partitions[0], label="task space of the following task generator")
|
35 |
+
return [partition, model]
|
36 |
+
else:
|
37 |
+
partition = gr.Dropdown([], value=None, label="task space of the following task generator")
|
38 |
+
model = gr.Dropdown([], value=None, label="model")
|
39 |
+
return [partition, model]
|
40 |
+
|
41 |
+
def update_partition_and_models_and_baselines(domain):
|
42 |
+
domain = domain2folder[domain]
|
43 |
+
path = f"{BASE_DIR}/{domain}"
|
44 |
+
|
45 |
+
if os.path.exists(path):
|
46 |
+
partitions = list_directories(path)
|
47 |
+
if domain.find("video") > -1:
|
48 |
+
model = gr.Dropdown(VIDEO_MODELS, value=VIDEO_MODELS[0], label="model")
|
49 |
+
baseline = gr.Dropdown(VIDEO_MODELS, value=VIDEO_MODELS[0], label="baseline")
|
50 |
+
else:
|
51 |
+
model = gr.Dropdown(MODELS, value=MODELS[0], label="model")
|
52 |
+
baseline = gr.Dropdown(MODELS, value=MODELS[0], label="baseline")
|
53 |
+
|
54 |
+
partition = gr.Dropdown(partitions, value=partitions[0], label="task space of the following task generator")
|
55 |
+
else:
|
56 |
+
partition = gr.Dropdown([], value=None, label="task space of the following task generator")
|
57 |
+
model = gr.Dropdown([], value=None, label="model")
|
58 |
+
baseline = gr.Dropdown([], value=None, label="baseline")
|
59 |
+
return [partition, model, baseline]
|
60 |
+
|
61 |
+
def get_filtered_task_ids(domain, partition, models, rank, k, threshold, baseline):
|
62 |
+
domain = domain2folder[domain]
|
63 |
+
data_path = f"{BASE_DIR}/{domain}/{partition}/merged_data.csv"
|
64 |
+
if not os.path.exists(data_path):
|
65 |
+
return []
|
66 |
+
else:
|
67 |
+
merged_df = pd.read_csv(data_path)
|
68 |
+
merged_df.rename(columns={'llavav1.5-7b': 'llava15-7b', 'llavav1.5-13b': 'llava15-13b'}, inplace=True)
|
69 |
+
|
70 |
+
df = merged_df
|
71 |
+
|
72 |
+
select_top = rank == "top"
|
73 |
+
# Model X is good / bad at
|
74 |
+
for model in models:
|
75 |
+
if baseline:
|
76 |
+
df = df[df[model] >= df[baseline]]
|
77 |
+
else:
|
78 |
+
if select_top:
|
79 |
+
df = df[df[model] >= threshold]
|
80 |
+
else:
|
81 |
+
df = df[df[model] <= threshold]
|
82 |
+
if not baseline:
|
83 |
+
df['mean score'] = df[models].mean(axis=1)
|
84 |
+
df = df.sort_values(by='mean score', ascending=False)
|
85 |
+
df = df.iloc[:k, :] if select_top else df.iloc[-k:, :]
|
86 |
+
|
87 |
+
task_ids = list(df.index)
|
88 |
+
return task_ids
|
89 |
+
|
90 |
+
def plot_patterns(domain, partition, models, rank, k, threshold, baseline, pattern, order):
|
91 |
+
domain = domain2folder[domain]
|
92 |
+
data_path = f"{BASE_DIR}/{domain}/{partition}/expanded_data.csv"
|
93 |
+
if not os.path.exists(data_path):
|
94 |
+
return None
|
95 |
+
task_ids = get_filtered_task_ids(domain, partition, models, rank, k, threshold, baseline)
|
96 |
+
expand_df = pd.read_csv(data_path)
|
97 |
+
|
98 |
+
chart_df = expand_df[expand_df['model'].isin((models + [baseline]) if baseline else models)]
|
99 |
+
chart_df = chart_df[chart_df['task id'].isin(task_ids)]
|
100 |
+
print(pattern)
|
101 |
+
freq, cols = eval(pattern)
|
102 |
+
pattern_str = ""
|
103 |
+
df = chart_df
|
104 |
+
for col in cols:
|
105 |
+
col_name, col_val = col
|
106 |
+
try:
|
107 |
+
col_val = int(col_val)
|
108 |
+
except:
|
109 |
+
col_val = col_val
|
110 |
+
df = df[df[col_name] == col_val]
|
111 |
+
pattern_str += f"{col_name} = {col_val}, "
|
112 |
+
print(len(df))
|
113 |
+
|
114 |
+
if baseline:
|
115 |
+
model_str = (', '.join(models) if len(models) > 1 else models[0])
|
116 |
+
phrase = f'{model_str} perform' if len(models) > 1 else f'{model_str} performs'
|
117 |
+
title = f"{phrase} better than {baseline} on {freq} tasks where {pattern_str[:-2]}"
|
118 |
+
else:
|
119 |
+
title = f"Models are {'best' if rank == 'top' else 'worst'} at {freq} tasks where {pattern_str[:-2]}"
|
120 |
+
|
121 |
+
chart = alt.Chart(df).mark_bar().encode(
|
122 |
+
alt.X('model:N',
|
123 |
+
sort=alt.EncodingSortField(field=f'score', order=order, op="mean"),
|
124 |
+
axis=alt.Axis(labels=False, tickSize=0)), # no title, no label angle),
|
125 |
+
alt.Y('mean(score):Q', scale=alt.Scale(zero=True)),
|
126 |
+
alt.Color('model:N').legend(),
|
127 |
+
).properties(
|
128 |
+
width=400,
|
129 |
+
height=300,
|
130 |
+
title=title
|
131 |
+
)
|
132 |
+
return chart
|
133 |
+
|
134 |
+
def plot_embedding(domain, partition, category):
|
135 |
+
domain = domain2folder[domain]
|
136 |
+
data_path = f"{BASE_DIR}/{domain}/{partition}/merged_data.csv"
|
137 |
+
|
138 |
+
if os.path.exists(data_path):
|
139 |
+
merged_df = pd.read_csv(data_path)
|
140 |
+
# models = merged_df.columns
|
141 |
+
has_image = 'image' in merged_df
|
142 |
+
chart = alt.Chart(merged_df).mark_point(size=30, filled=True).encode(
|
143 |
+
alt.OpacityValue(0.5),
|
144 |
+
alt.X('x:Q'),
|
145 |
+
alt.Y('y:Q'),
|
146 |
+
alt.Color(f'{category}:N'),
|
147 |
+
tooltip=['question', 'answer'] + (['image'] if has_image else []),
|
148 |
+
).properties(
|
149 |
+
width=800,
|
150 |
+
height=800,
|
151 |
+
title="UMAP Projected Task Embeddings"
|
152 |
+
).configure_axis(
|
153 |
+
labelFontSize=25,
|
154 |
+
titleFontSize=25,
|
155 |
+
).configure_title(
|
156 |
+
fontSize=40
|
157 |
+
).configure_legend(
|
158 |
+
labelFontSize=25,
|
159 |
+
titleFontSize=25,
|
160 |
+
).interactive()
|
161 |
+
return chart
|
162 |
+
else:
|
163 |
+
return None
|
164 |
+
|
165 |
+
|
166 |
+
|
167 |
+
def plot_multi_models(domain, partition, category, cat_options, models, order, pattern, aggregate="mean"):
|
168 |
+
domain = domain2folder[domain]
|
169 |
+
data_path = f"{BASE_DIR}/{domain}/{partition}/expanded_data.csv"
|
170 |
+
if not os.path.exists(data_path):
|
171 |
+
return None
|
172 |
+
expand_df = pd.read_csv(data_path)
|
173 |
+
print(pattern)
|
174 |
+
if pattern is not None:
|
175 |
+
df = expand_df
|
176 |
+
freq, cols = eval(pattern)
|
177 |
+
pattern_str = ""
|
178 |
+
for col in cols:
|
179 |
+
col_name, col_val = col
|
180 |
+
try:
|
181 |
+
col_val = int(col_val)
|
182 |
+
except:
|
183 |
+
col_val = col_val
|
184 |
+
df = df[df[col_name] == col_val]
|
185 |
+
pattern_str += f"{col_name} = {col_val}, "
|
186 |
+
chart = alt.Chart(df).mark_bar().encode(
|
187 |
+
alt.X('model:N',
|
188 |
+
sort=alt.EncodingSortField(field=f'score', order='ascending', op="mean"),
|
189 |
+
axis=alt.Axis(labels=False, tickSize=0)), # no title, no label angle),
|
190 |
+
alt.Y('mean(score):Q', scale=alt.Scale(zero=True)),
|
191 |
+
alt.Color('model:N').legend(),
|
192 |
+
).properties(
|
193 |
+
width=200,
|
194 |
+
height=100,
|
195 |
+
title=f"How do models perform on tasks where {pattern_str[:-2]} (N={freq})?"
|
196 |
+
)
|
197 |
+
return chart
|
198 |
+
else:
|
199 |
+
df = expand_df[(expand_df['model'].isin(models)) & (expand_df[category].isin(cat_options))]
|
200 |
+
if len(models) > 1:
|
201 |
+
chart = alt.Chart(df).mark_bar().encode(
|
202 |
+
alt.X('model:N',
|
203 |
+
sort=alt.EncodingSortField(field=f'score', order=order, op="mean"),
|
204 |
+
axis=alt.Axis(labels=False, tickSize=0, title=None)),
|
205 |
+
alt.Y('mean(score):Q', scale=alt.Scale(zero=True)),
|
206 |
+
alt.Color('model:N').legend(),
|
207 |
+
alt.Column(f'{category}:N', header=alt.Header(titleOrient='bottom', labelOrient='bottom'))
|
208 |
+
).properties(
|
209 |
+
width=200,
|
210 |
+
height=100,
|
211 |
+
title=f"How do models perform across {category}?"
|
212 |
+
)
|
213 |
+
else:
|
214 |
+
chart = alt.Chart(df).mark_bar().encode(
|
215 |
+
alt.X(f'{category}:N', sort=alt.EncodingSortField(field=f'score', order=order, op="mean")), # no title, no label angle),
|
216 |
+
alt.Y('mean(score):Q', scale=alt.Scale(zero=True)),
|
217 |
+
alt.Color(f'{category}:N').legend(None),
|
218 |
+
).properties(
|
219 |
+
width=200,
|
220 |
+
height=100,
|
221 |
+
title=f"How does {models[0]} perform across {category}?"
|
222 |
+
)
|
223 |
+
chart = chart.configure_title(fontSize=15, offset=5, orient='top', anchor='middle')
|
224 |
+
return chart
|
225 |
+
|
226 |
+
|
227 |
+
def plot(domain, partition, models, rank, k, threshold, baseline, order, category, cat_options):
|
228 |
+
domain = domain2folder[domain]
|
229 |
+
data_path = f"{BASE_DIR}/{domain}/{partition}/merged_data.csv"
|
230 |
+
expand_data_path = f"{BASE_DIR}/{domain}/{partition}/expanded_data.csv"
|
231 |
+
# task_plan.reset_index(inplace=True)
|
232 |
+
if not os.path.exists(data_path) or not os.path.exists(expand_data_path):
|
233 |
+
return None
|
234 |
+
else:
|
235 |
+
merged_df = pd.read_csv(data_path)
|
236 |
+
merged_df.rename(columns={'llavav1.5-7b': 'llava15-7b', 'llavav1.5-13b': 'llava15-13b'}, inplace=True)
|
237 |
+
expand_df = pd.read_csv(expand_data_path)
|
238 |
+
|
239 |
+
df = merged_df
|
240 |
+
|
241 |
+
select_top = rank == "top"
|
242 |
+
# Model X is good / bad at
|
243 |
+
for model in models:
|
244 |
+
if baseline:
|
245 |
+
df = df[df[model] >= df[baseline]]
|
246 |
+
else:
|
247 |
+
if select_top:
|
248 |
+
df = df[df[model] >= threshold]
|
249 |
+
else:
|
250 |
+
df = df[df[model] <= threshold]
|
251 |
+
if not baseline:
|
252 |
+
df['mean score'] = df[models].mean(axis=1)
|
253 |
+
df = df.sort_values(by='mean score', ascending=False)
|
254 |
+
df = df.iloc[:k, :] if select_top else df.iloc[-k:, :]
|
255 |
+
|
256 |
+
task_ids = list(df.index)
|
257 |
+
if baseline:
|
258 |
+
models += [baseline]
|
259 |
+
|
260 |
+
chart_df = expand_df[expand_df['model'].isin(models)]
|
261 |
+
chart_df = chart_df[chart_df['task id'].isin(task_ids)]
|
262 |
+
|
263 |
+
if cat_options:
|
264 |
+
df = chart_df[chart_df[category].isin(cat_options)]
|
265 |
+
else:
|
266 |
+
df = chart_df
|
267 |
+
if baseline:
|
268 |
+
model_str = (', '.join(models) if len(models) > 1 else models[0])
|
269 |
+
phrase = f'{model_str} perform' if len(models) > 1 else f'{model_str} performs'
|
270 |
+
title = f"Are there any tasks where {phrase} better than {baseline} (by {category})?"
|
271 |
+
|
272 |
+
else:
|
273 |
+
title = f"What tasks are models {'best' if select_top else 'worst'} at by {category}?"
|
274 |
+
|
275 |
+
if len(models) > 1:
|
276 |
+
chart = alt.Chart(df).mark_bar().encode(
|
277 |
+
alt.X('model:N',
|
278 |
+
sort=alt.EncodingSortField(field=f'score', order=order, op="mean"),
|
279 |
+
axis=alt.Axis(labels=False, tickSize=0, title=None)),
|
280 |
+
alt.Y('mean(score):Q', scale=alt.Scale(zero=True)),
|
281 |
+
alt.Color('model:N').legend(),
|
282 |
+
alt.Column(f'{category}:N', header=alt.Header(titleOrient='bottom', labelOrient='bottom'))
|
283 |
+
).properties(
|
284 |
+
width=200,
|
285 |
+
height=100,
|
286 |
+
title=title
|
287 |
+
)
|
288 |
+
else:
|
289 |
+
chart = alt.Chart(df).mark_bar().encode(
|
290 |
+
alt.X(f'{category}:N', sort=alt.EncodingSortField(field=f'score', order=order, op="mean")), # no title, no label angle),
|
291 |
+
alt.Y('mean(score):Q', scale=alt.Scale(zero=True)),
|
292 |
+
alt.Color(f'{category}:N').legend(None),
|
293 |
+
).properties(
|
294 |
+
width=200,
|
295 |
+
height=100,
|
296 |
+
title=f"What tasks is model {models[0]} {'best' if select_top else 'worst'} at by {category}?"
|
297 |
+
)
|
298 |
+
chart = chart.configure_title(fontSize=15, offset=5, orient='top', anchor='middle')
|
299 |
+
return chart
|
300 |
+
|
301 |
+
|
302 |
+
def get_frequent_patterns(task_plan, scores):
|
303 |
+
find_frequent_patterns(k=10, df=task_plan, scores=scores)
|
304 |
+
|
305 |
+
def list_directories(path):
|
306 |
+
"""List all directories within a given path."""
|
307 |
+
return [d for d in os.listdir(path) if os.path.isdir(os.path.join(path, d))]
|
308 |
+
|
309 |
+
|
310 |
+
def update_category(domain, partition):
|
311 |
+
domain = domain2folder[domain]
|
312 |
+
data_path = f"{BASE_DIR}/{domain}/{partition}/task_plan.pkl"
|
313 |
+
if os.path.exists(data_path):
|
314 |
+
data = pickle.load(open(data_path, 'rb'))
|
315 |
+
categories = list(data.columns)
|
316 |
+
category = gr.Dropdown(categories+["task id"], value=None, label="task metadata", interactive=True)
|
317 |
+
return category
|
318 |
+
else:
|
319 |
+
return gr.Dropdown([], value=None, label="task metadata")
|
320 |
+
|
321 |
+
def update_category2(domain, partition, existing_category):
|
322 |
+
domain = domain2folder[domain]
|
323 |
+
data_path = f"{BASE_DIR}/{domain}/{partition}/task_plan.pkl"
|
324 |
+
if os.path.exists(data_path):
|
325 |
+
data = pickle.load(open(data_path, 'rb'))
|
326 |
+
categories = list(data.columns)
|
327 |
+
if existing_category and existing_category in categories:
|
328 |
+
categories.remove(existing_category)
|
329 |
+
category = gr.Dropdown(categories, value=None, label="Optional: second task metadata", interactive=True)
|
330 |
+
return category
|
331 |
+
else:
|
332 |
+
return gr.Dropdown([], value=None, label="task metadata")
|
333 |
+
|
334 |
+
def update_partition(domain):
|
335 |
+
domain = domain2folder[domain]
|
336 |
+
path = f"{BASE_DIR}/{domain}"
|
337 |
+
if os.path.exists(path):
|
338 |
+
partitions = list_directories(path)
|
339 |
+
return gr.Dropdown(partitions, value=partitions[0], label="task space of the following task generator")
|
340 |
+
else:
|
341 |
+
return gr.Dropdown([], value=None, label="task space of the following task generator")
|
342 |
+
|
343 |
+
def update_k(domain, partition, category=None):
|
344 |
+
domain = domain2folder[domain]
|
345 |
+
data_path = f"{BASE_DIR}/{domain}/{partition}/merged_data.csv"
|
346 |
+
if os.path.exists(data_path):
|
347 |
+
data = pd.read_csv(data_path)
|
348 |
+
max_k = len(data[category].unique()) if category and category != "task id" else len(data)
|
349 |
+
mid = max_k // 2
|
350 |
+
return gr.Slider(1, max_k, mid, step=1.0, label="k")
|
351 |
+
else:
|
352 |
+
return gr.Slider(1, 1, 1, step=1.0, label="k")
|
353 |
+
|
354 |
+
# def update_category_values(domain, partition, category):
|
355 |
+
# data_path = f"{BASE_DIR}/{domain}/{partition}/merged_data.csv"
|
356 |
+
# if os.path.exists(data_path) and category is not None:
|
357 |
+
# data = pd.read_csv(data_path)
|
358 |
+
# uni_cats = list(data[category].unique())
|
359 |
+
# return gr.Dropdown(uni_cats, multiselect=True, value=None, interactive=True, label="category values")
|
360 |
+
# else:
|
361 |
+
# return gr.Dropdown([], multiselect=True, value=None, interactive=False, label="category values")
|
362 |
+
|
363 |
+
# def update_category_values(domain, partition, models, rank, k, threshold, baseline, category):
|
364 |
+
# data_path = f"{BASE_DIR}/{domain}/{partition}/merged_data.csv"
|
365 |
+
|
366 |
+
# if not os.path.exists(data_path):
|
367 |
+
# return gr.Dropdown([], multiselect=True, value=None, interactive=False, label="category values")
|
368 |
+
# else:
|
369 |
+
# merged_df = pd.read_csv(data_path)
|
370 |
+
# merged_df.rename(columns={'llavav1.5-7b': 'llava15-7b', 'llavav1.5-13b': 'llava15-13b'}, inplace=True)
|
371 |
+
|
372 |
+
# df = merged_df
|
373 |
+
|
374 |
+
# select_top = rank == "top"
|
375 |
+
# # Model X is good / bad at
|
376 |
+
# for model in models:
|
377 |
+
# if baseline:
|
378 |
+
# df = df[df[model] >= df[baseline]]
|
379 |
+
# else:
|
380 |
+
# if select_top:
|
381 |
+
# df = df[df[model] >= threshold]
|
382 |
+
# else:
|
383 |
+
# df = df[df[model] <= threshold]
|
384 |
+
# if not baseline:
|
385 |
+
# df['mean score'] = df[models].mean(axis=1)
|
386 |
+
# df = df.sort_values(by='mean score', ascending=False)
|
387 |
+
# df = df.iloc[:k, :] if select_top else df.iloc[-k:, :]
|
388 |
+
# uni_cats = list(df[category].unique())
|
389 |
+
# return gr.Dropdown(uni_cats, multiselect=True, value=None, interactive=True, label="category values")
|
390 |
+
|
391 |
+
|
392 |
+
def update_tasks(domain, partition, find_pattern):
|
393 |
+
domain = domain2folder[domain]
|
394 |
+
if find_pattern == "yes":
|
395 |
+
k1 = gr.Slider(1, 10000, 10, step=1.0, label="k", interactive=True)
|
396 |
+
pattern = gr.Dropdown([], value=None, interactive=True, label="pattern")
|
397 |
+
category1 = gr.Dropdown([], value=None, interactive=False, label="task metadata")
|
398 |
+
return [k1, pattern, category1]
|
399 |
+
else:
|
400 |
+
k1 = gr.Slider(1, 10000, 10, step=1.0, label="k", interactive=False)
|
401 |
+
pattern = gr.Dropdown([], value=None, interactive=False, label="pattern")
|
402 |
+
|
403 |
+
data_path = f"{BASE_DIR}/{domain}/{partition}/merged_data.csv"
|
404 |
+
if os.path.exists(data_path):
|
405 |
+
data = pd.read_csv(data_path)
|
406 |
+
non_columns = MODELS + ['question', 'answer']
|
407 |
+
categories = [cat for cat in list(data.columns) if cat not in non_columns]
|
408 |
+
category1 = gr.Dropdown(categories, value=categories[0], interactive=True, label="task metadata")
|
409 |
+
else:
|
410 |
+
category1 = gr.Dropdown([], value=None, label="task metadata")
|
411 |
+
return [k1, pattern, category1]
|
412 |
+
|
413 |
+
|
414 |
+
def update_pattern(domain, partition, k):
|
415 |
+
domain = domain2folder[domain]
|
416 |
+
data_path = f"{BASE_DIR}/{domain}/{partition}/patterns.pkl"
|
417 |
+
if not os.path.exists(data_path):
|
418 |
+
return gr.Dropdown([], value=None, interactive=False, label="pattern")
|
419 |
+
else:
|
420 |
+
results = pickle.load(open(data_path, 'rb'))
|
421 |
+
patterns = results[0]
|
422 |
+
patterns = [str(p) for p in patterns]
|
423 |
+
print(patterns)
|
424 |
+
return gr.Dropdown(patterns[:k], value=None, interactive=True, label="pattern")
|
425 |
+
|
426 |
+
def update_threshold(domain, partition, baseline):
|
427 |
+
domain = domain2folder[domain]
|
428 |
+
print(baseline)
|
429 |
+
if baseline:
|
430 |
+
rank = gr.Radio(['top', 'bottom'], value='top', label="rank", interactive=False)
|
431 |
+
k = gr.Slider(1, 10000, 10, step=1.0, label="k", interactive=False)
|
432 |
+
threshold = gr.Slider(0, 1, 0.0, label="threshold", interactive=False)
|
433 |
+
return [rank, k, threshold]
|
434 |
+
else:
|
435 |
+
data_path = f"{BASE_DIR}/{domain}/{partition}/merged_data.csv"
|
436 |
+
if os.path.exists(data_path):
|
437 |
+
data = pd.read_csv(data_path)
|
438 |
+
max_k = len(data)
|
439 |
+
print(max_k)
|
440 |
+
k = gr.Slider(1, max_k, 10, step=1.0, label="k", interactive=True)
|
441 |
+
else:
|
442 |
+
k = gr.Slider(1, 1, 1, step=1.0, label="k")
|
443 |
+
rank = gr.Radio(['top', 'bottom'], value='top', label="rank", interactive=True)
|
444 |
+
|
445 |
+
threshold = gr.Slider(0, 1, 0.0, label="threshold", interactive=True)
|
446 |
+
return [rank, k, threshold]
|
447 |
+
|
448 |
+
def calc_surprisingness(model, scores, embeddings, k):
|
449 |
+
scores = scores[model].to_numpy()
|
450 |
+
sim = embeddings @ embeddings.T
|
451 |
+
# print("sim values:", sim.shape, sim)
|
452 |
+
indices = np.argsort(-sim)[:, :k]
|
453 |
+
# print("indices:", indices.shape, indices)
|
454 |
+
score_diff = scores[:, None] - scores[indices]
|
455 |
+
# print("score differences:", score_diff.shape, score_diff)
|
456 |
+
sim = sim[np.arange(len(scores))[:, None], indices]
|
457 |
+
# print("top10 sim:", sim.shape, sim)
|
458 |
+
all_surprisingness = score_diff * sim
|
459 |
+
# print("all surprisingness:", all_surprisingness.shape, all_surprisingness)
|
460 |
+
mean_surprisingness = np.mean(score_diff * sim, axis=1)
|
461 |
+
res = {'similarity': sim,
|
462 |
+
'task index': indices,
|
463 |
+
'score difference': score_diff,
|
464 |
+
'all surprisingness': all_surprisingness,
|
465 |
+
'mean surprisingness': mean_surprisingness
|
466 |
+
}
|
467 |
+
return res
|
468 |
+
|
469 |
+
|
470 |
+
def plot_surprisingness(domain, partition, model, rank, k, num_neighbors):
|
471 |
+
domain = domain2folder[domain]
|
472 |
+
# model = model[0]
|
473 |
+
model_str = model.replace("-", "_")
|
474 |
+
|
475 |
+
# sp_path = f"{BASE_DIR}/{domain}/{partition}/surprise_data.csv"
|
476 |
+
sp_pkl = f"{BASE_DIR}/{domain}/{partition}/{model_str}_surprise.pkl"
|
477 |
+
merged_path = f"{BASE_DIR}/{domain}/{partition}/merged_data.csv"
|
478 |
+
if os.path.exists(sp_pkl) and os.path.exists(merged_path): # and not os.path.exists(sp_path)
|
479 |
+
# if os.path.exists(sp_path):
|
480 |
+
# sp_df = pd.read_csv(sp_path)
|
481 |
+
# # res = calc_surprisingness(model, scores, embeds, num_neighbors)
|
482 |
+
# # k = 10
|
483 |
+
# model = 'qwenvl'
|
484 |
+
# num_neighbors = 10
|
485 |
+
# if os.path.exists(sp_pkl):
|
486 |
+
res = pickle.load(open(sp_pkl, 'rb'))
|
487 |
+
|
488 |
+
total_num_task = res['task index'].shape[0]
|
489 |
+
all_records = []
|
490 |
+
for i in range(total_num_task):
|
491 |
+
mean_surprisingness = np.mean(res['all surprisingness'][i, :num_neighbors])
|
492 |
+
for j in range(num_neighbors):
|
493 |
+
neighbor_id = res['task index'][i, j]
|
494 |
+
score_diff = res['score difference'][i, j]
|
495 |
+
surprisingness = res['all surprisingness'][i, j]
|
496 |
+
similarity = res['similarity'][i, j]
|
497 |
+
|
498 |
+
record = {"task id": i,
|
499 |
+
"neighbor rank": j,
|
500 |
+
"neighbor id": neighbor_id,
|
501 |
+
"score difference": score_diff,
|
502 |
+
"surprisingness": surprisingness,
|
503 |
+
"mean surprisingness": mean_surprisingness,
|
504 |
+
"similarity": similarity
|
505 |
+
}
|
506 |
+
# print(record)
|
507 |
+
all_records.append(record)
|
508 |
+
sp_df = pd.DataFrame.from_records(all_records)
|
509 |
+
sp_df = sp_df.sort_values(by="mean surprisingness", ascending=False)
|
510 |
+
|
511 |
+
num_rows = k * num_neighbors
|
512 |
+
df = sp_df.iloc[:num_rows, :] if rank == "top" else sp_df.iloc[-num_rows:, :]
|
513 |
+
print(len(df))
|
514 |
+
|
515 |
+
df['is target'] = df.apply(lambda row: int(row['task id'] == row['neighbor id']), axis=1)
|
516 |
+
|
517 |
+
merged_df = pd.read_csv(merged_path)
|
518 |
+
for col in merged_df.columns:
|
519 |
+
df[col] = df.apply(lambda row: merged_df.iloc[int(row['neighbor id']), :][col], axis=1)
|
520 |
+
|
521 |
+
tooltips = ['neighbor id'] + ['image', 'question', 'answer', model]
|
522 |
+
|
523 |
+
print(df.head())
|
524 |
+
pts = alt.selection_point(encodings=['x'])
|
525 |
+
embeds = alt.Chart(df).mark_point(size=30, filled=True).encode(
|
526 |
+
alt.OpacityValue(0.5),
|
527 |
+
alt.X('x:Q', scale=alt.Scale(zero=False)),
|
528 |
+
alt.Y('y:Q', scale=alt.Scale(zero=False)),
|
529 |
+
alt.Color(f'{model}:Q'), #scale=alt.Scale(domain=[1, 0.5, 0], range=['blue', 'white', 'red'], interpolate='rgb')
|
530 |
+
alt.Size("is target:N", legend=None, scale=alt.Scale(domain=[0, 1], range=[300, 500])),
|
531 |
+
alt.Shape("is target:N", legend=None, scale=alt.Scale(domain=[0, 1], range=['circle', 'triangle'])),
|
532 |
+
alt.Order("is target:N"),
|
533 |
+
tooltip=tooltips,
|
534 |
+
).properties(
|
535 |
+
width=400,
|
536 |
+
height=400,
|
537 |
+
title=f"What are the tasks {model} is surprisingly {'good' if rank == 'top' else 'bad'} at compared to {num_neighbors} similar tasks?"
|
538 |
+
).transform_filter(
|
539 |
+
pts
|
540 |
+
)
|
541 |
+
|
542 |
+
bar = alt.Chart(df).mark_bar().encode(
|
543 |
+
alt.Y('mean(mean surprisingness):Q'),
|
544 |
+
alt.X('task id:N', sort=alt.EncodingSortField(field='mean surprisingness', order='descending')),
|
545 |
+
color=alt.condition(pts, alt.ColorValue("steelblue"), alt.ColorValue("grey")), #
|
546 |
+
).add_params(pts).properties(
|
547 |
+
width=400,
|
548 |
+
height=200,
|
549 |
+
)
|
550 |
+
|
551 |
+
chart = alt.hconcat(
|
552 |
+
bar,
|
553 |
+
embeds
|
554 |
+
).resolve_legend(
|
555 |
+
color="independent",
|
556 |
+
size="independent"
|
557 |
+
).configure_title(
|
558 |
+
fontSize=20
|
559 |
+
).configure_legend(
|
560 |
+
labelFontSize=10,
|
561 |
+
titleFontSize=10,
|
562 |
+
)
|
563 |
+
return chart
|
564 |
+
else:
|
565 |
+
print(sp_pkl, merged_path)
|
566 |
+
return None
|
567 |
+
|
568 |
+
|
569 |
+
|
570 |
+
def plot_task_distribution(domain, partition, category):
|
571 |
+
domain = domain2folder[domain]
|
572 |
+
task_plan = pickle.load(open(f"{BASE_DIR}/{domain}/{partition}/task_plan.pkl", "rb"))
|
573 |
+
task_plan.reset_index(inplace=True)
|
574 |
+
col_name = category
|
575 |
+
task_plan_cnt = task_plan.groupby(col_name)['index'].count().reset_index()
|
576 |
+
task_plan_cnt.rename(columns={'index': 'count'}, inplace=True)
|
577 |
+
task_plan_cnt['frequency (%)'] = round(task_plan_cnt['count'] / len(task_plan) * 100, 2)
|
578 |
+
task_plan_cnt.head()
|
579 |
+
|
580 |
+
base = alt.Chart(task_plan_cnt).encode(
|
581 |
+
alt.Theta("count:Q").stack(True),
|
582 |
+
alt.Color(f"{col_name}:N").legend(),
|
583 |
+
tooltip=[col_name, 'count', 'frequency (%)']
|
584 |
+
)
|
585 |
+
pie = base.mark_arc(outerRadius=120)
|
586 |
+
return pie
|
587 |
+
|
588 |
+
def plot_all(domain, partition, models, category1, category2, agg):
|
589 |
+
domain = domain2folder[domain]
|
590 |
+
data_path = f"{BASE_DIR}/{domain}/{partition}/expanded_data.csv"
|
591 |
+
if not os.path.exists(data_path):
|
592 |
+
return None
|
593 |
+
expand_df = pd.read_csv(data_path)
|
594 |
+
chart_df = expand_df[expand_df['model'].isin(models)]
|
595 |
+
if category2:
|
596 |
+
|
597 |
+
color_val = f'{agg}(score):Q'
|
598 |
+
|
599 |
+
chart = alt.Chart(chart_df).mark_rect().encode(
|
600 |
+
alt.X(f'{category1}:N', sort=alt.EncodingSortField(field='score', order='ascending', op=agg)),
|
601 |
+
alt.Y(f'{category2}:N', sort=alt.EncodingSortField(field='score', order='descending', op=agg)), # no title, no label angle),
|
602 |
+
alt.Color(color_val),
|
603 |
+
alt.Tooltip('score', aggregate=agg, title=f"{agg} score"),
|
604 |
+
).properties(
|
605 |
+
width=800,
|
606 |
+
height=200,
|
607 |
+
)
|
608 |
+
else:
|
609 |
+
category = "index" if category1 == "task id" else category1
|
610 |
+
# cat_options = list(chart_df[category].unique())
|
611 |
+
# cat_options = cat_options[:5]
|
612 |
+
y_val = f'{agg}(score):Q'
|
613 |
+
df = chart_df
|
614 |
+
# df = chart_df[chart_df[category].isin(cat_options)]
|
615 |
+
if len(models) > 1:
|
616 |
+
chart = alt.Chart(df).mark_bar().encode(
|
617 |
+
alt.X('model:N',
|
618 |
+
sort=alt.EncodingSortField(field=f'score', order='ascending', op=agg),
|
619 |
+
axis=alt.Axis(labels=False, tickSize=0, title=None)),
|
620 |
+
alt.Y(y_val, scale=alt.Scale(zero=True)),
|
621 |
+
alt.Color('model:N').legend(),
|
622 |
+
alt.Column(f'{category}:N', header=alt.Header(titleOrient='bottom', labelOrient='bottom'))
|
623 |
+
).properties(
|
624 |
+
width=200,
|
625 |
+
height=100,
|
626 |
+
title=f"How do models perform across {category}?"
|
627 |
+
)
|
628 |
+
else:
|
629 |
+
chart = alt.Chart(df).mark_bar().encode(
|
630 |
+
alt.X(f'{category}:N', sort=alt.EncodingSortField(field=f'score', order='ascending', op=agg)), # no title, no label angle),
|
631 |
+
alt.Y(y_val, scale=alt.Scale(zero=True)),
|
632 |
+
alt.Color(f'{category}:N').legend(None),
|
633 |
+
).properties(
|
634 |
+
width=200,
|
635 |
+
height=100,
|
636 |
+
title=f"How does {models[0]} perform across {category}?"
|
637 |
+
)
|
638 |
+
chart = chart.configure_title(fontSize=20, offset=5, orient='top', anchor='middle').configure_axis(
|
639 |
+
labelFontSize=20,
|
640 |
+
titleFontSize=20,
|
641 |
+
).configure_legend(
|
642 |
+
labelFontSize=15,
|
643 |
+
titleFontSize=15,
|
644 |
+
)
|
645 |
+
return chart
|
646 |
+
|
647 |
+
def update_widgets(domain, partition, category, query_type):
|
648 |
+
domain = domain2folder[domain]
|
649 |
+
data_path = f"{BASE_DIR}/{domain}/{partition}/expanded_data.csv"
|
650 |
+
if not os.path.exists(data_path):
|
651 |
+
print("here?")
|
652 |
+
return [None] * 11
|
653 |
+
df = pd.read_csv(data_path)
|
654 |
+
max_k = len(df[category].unique()) if category and category != "task id" else len(df)
|
655 |
+
|
656 |
+
widgets = []
|
657 |
+
|
658 |
+
if query_type == "top k":
|
659 |
+
# aggregate = gr.Dropdown(['mean', 'median', 'min', 'max'], value="mean", label=" ", interactive=True, visible=True)
|
660 |
+
rank = gr.Radio(['top', 'bottom'], value='top', label=" ", interactive=True, visible=True)
|
661 |
+
k = gr.Slider(1, max_k, max_k // 2, step=1.0, label="k", interactive=True, visible=True)
|
662 |
+
model = gr.Dropdown(MODELS, value=MODELS, label="of model(s)'", multiselect=True, interactive=True, visible=True)
|
663 |
+
# model_aggregate = gr.Radio(['mean', 'median', 'min', 'max'], value="mean", label="task category aggregate", interactive=True, visible=True)
|
664 |
+
model_aggregate = gr.Dropdown(['mean', 'median', 'min', 'max'], value="mean", label=" ", interactive=True, visible=True)
|
665 |
+
|
666 |
+
baseline = gr.Dropdown(MODELS, value=None, label="baseline", visible=False)
|
667 |
+
direction = gr.Radio(['above', 'below'], value='above', label=" ", visible=False)
|
668 |
+
threshold = gr.Slider(0, 1, 0.0, label="threshold", visible=False)
|
669 |
+
baseline_aggregate = gr.Radio(['mean', 'median', 'min', 'max'], value="mean", label="baseline aggregate", visible=False)
|
670 |
+
md1 = gr.Markdown(r"<h2>ranked by the </h2>")
|
671 |
+
md2 = gr.Markdown(r"<h2>accuracy</h2>")
|
672 |
+
md3 = gr.Markdown(r"")
|
673 |
+
|
674 |
+
elif query_type == "threshold":
|
675 |
+
|
676 |
+
# aggregate = gr.Radio(['mean', 'median', 'min', 'max'], value="mean", label="task aggregate", interactive=True, visible=True)
|
677 |
+
# aggregate = gr.Dropdown(['mean', 'median', 'min', 'max'], value="mean", label=" ", interactive=True, visible=True)
|
678 |
+
model = gr.Dropdown(MODELS, value=MODELS[0], label="of model(s)'", multiselect=True, interactive=True, visible=True)
|
679 |
+
direction = gr.Radio(['above', 'below'], value='above', label=" ", interactive=True, visible=True)
|
680 |
+
threshold = gr.Slider(0, 1, 0.0, label="threshold", interactive=True, visible=True)
|
681 |
+
# model_aggregate = gr.Radio(['mean', 'median', 'min', 'max'], value="mean", label="task category aggregate", interactive=True, visible=True)
|
682 |
+
model_aggregate = gr.Dropdown(['mean', 'median', 'min', 'max'], value="mean", label=" ", interactive=True, visible=True)
|
683 |
+
|
684 |
+
rank = gr.Radio(['top', 'bottom'], value='top', label=" ", visible=False)
|
685 |
+
k = gr.Slider(1, max_k, max_k // 2, step=1.0, label="k", visible=False)
|
686 |
+
baseline = gr.Dropdown(MODELS, value=None, label="baseline", visible=False)
|
687 |
+
baseline_aggregate = gr.Radio(['mean', 'median', 'min', 'max'], value="mean", label="baseline aggregate", visible=False)
|
688 |
+
md1 = gr.Markdown(r"<h2>where the</h2>")
|
689 |
+
md2 = gr.Markdown(r"<h2>accuracy is</h2>")
|
690 |
+
md3 = gr.Markdown(r"")
|
691 |
+
|
692 |
+
elif query_type == "model comparison":
|
693 |
+
|
694 |
+
model = gr.Dropdown(MODELS, value=MODELS[0], label="of model(s)' accuracy", multiselect=True, interactive=True, visible=True)
|
695 |
+
baseline = gr.Dropdown(MODELS, value=None, label="of baseline(s)' accuracy", multiselect=True, interactive=True, visible=True)
|
696 |
+
direction = gr.Radio(['above', 'below'], value='above', label=" ", interactive=True, visible=True)
|
697 |
+
threshold = gr.Slider(0, 1, 0.0, label="threshold", interactive=True, visible=True)
|
698 |
+
model_aggregate = gr.Dropdown(['mean', 'median', 'min', 'max'], value="mean", label=" ", interactive=True, visible=True)
|
699 |
+
# baseline_aggregate = gr.Radio(['mean', 'median', 'min', 'max'], value="mean", label="task category aggregate (over baselines)", interactive=True, visible=True)
|
700 |
+
baseline_aggregate = gr.Dropdown(['mean', 'median', 'min', 'max'], value="mean", label=" ", interactive=True, visible=True)
|
701 |
+
|
702 |
+
# aggregate = gr.Radio(['mean', 'median', 'min', 'max'], value="mean", label="task aggregate", interactive=True, visible=False)
|
703 |
+
rank = gr.Radio(['top', 'bottom'], value='top', label=" ", visible=False)
|
704 |
+
k = gr.Slider(1, max_k, max_k // 2, step=1.0, label="k", visible=False)
|
705 |
+
md1 = gr.Markdown(r"<h2>where the difference between the </h2>")
|
706 |
+
md2 = gr.Markdown(r"<h2>is </h2>")
|
707 |
+
md3 = gr.Markdown(r"<h2>and the</h2>")
|
708 |
+
|
709 |
+
elif query_type == "model debugging":
|
710 |
+
model = gr.Dropdown(MODELS, value=MODELS[0], label="model's", multiselect=False, interactive=True, visible=True)
|
711 |
+
|
712 |
+
# aggregate = gr.Dropdown(['mean', 'median', 'min', 'max'], value="mean", label=" ", visible=False)
|
713 |
+
baseline = gr.Dropdown(MODELS, value=None, label="baseline", visible=False)
|
714 |
+
direction = gr.Radio(['above', 'below'], value='above', label=" ", visible=False)
|
715 |
+
threshold = gr.Slider(0, 1, 0.0, label="threshold", visible=False)
|
716 |
+
rank = gr.Radio(['top', 'bottom'], value='top', label=" ", visible=False)
|
717 |
+
k = gr.Slider(1, max_k, max_k // 2, step=1.0, label="k", visible=False)
|
718 |
+
model_aggregate = gr.Radio(['mean', 'median', 'min', 'max'], value="mean", label="task category aggregate (over models)", visible=False)
|
719 |
+
baseline_aggregate = gr.Radio(['mean', 'median', 'min', 'max'], value="mean", label="baseline aggregate", visible=False)
|
720 |
+
md1 = gr.Markdown(r"<h2>where </h2>")
|
721 |
+
md2 = gr.Markdown(r"<h2>mean accuracy is below its overall mean accuracy by one standard deviation</h2>")
|
722 |
+
md3 = gr.Markdown(r"")
|
723 |
+
else:
|
724 |
+
widgets = [None] * 11
|
725 |
+
widgets = [rank, k, direction, threshold, model, model_aggregate, baseline, baseline_aggregate, md1, md2, md3]
|
726 |
+
|
727 |
+
return widgets
|
728 |
+
|
729 |
+
def select_tasks(domain, partition, category, query_type, task_agg, models, model_agg, rank, k, direction, threshold, baselines, baseline_agg):
|
730 |
+
domain = domain2folder[domain]
|
731 |
+
data_path = f"{BASE_DIR}/{domain}/{partition}/expanded_data.csv"
|
732 |
+
merged_path = f"{BASE_DIR}/{domain}/{partition}/merged_data.csv"
|
733 |
+
|
734 |
+
if not os.path.exists(data_path) or not os.path.exists(merged_path):
|
735 |
+
return gr.DataFrame(None)
|
736 |
+
df = pd.read_csv(data_path)
|
737 |
+
merged_df = pd.read_csv(merged_path)
|
738 |
+
task_plan = pickle.load(open(f"{BASE_DIR}/{domain}/{partition}/task_plan.pkl", 'rb'))
|
739 |
+
task_plan.reset_index(inplace=True)
|
740 |
+
if not category or category == "task id":
|
741 |
+
category = 'index'
|
742 |
+
|
743 |
+
if query_type == "top k":
|
744 |
+
df = df[df['model'].isin(models)]
|
745 |
+
df = df.groupby([category, 'model'])['score'].agg(task_agg).reset_index()
|
746 |
+
df = df.groupby([category])['score'].agg(model_agg).reset_index()
|
747 |
+
df = df.sort_values(by='score', ascending=False)
|
748 |
+
if rank == "bottom":
|
749 |
+
df = df.iloc[-k:, :]
|
750 |
+
else:
|
751 |
+
df = df.iloc[:k, :]
|
752 |
+
elif query_type == "threshold":
|
753 |
+
df = df[df['model'].isin(models)]
|
754 |
+
df = df.groupby([category, 'model'])['score'].agg(task_agg).reset_index()
|
755 |
+
df = df.groupby([category])['score'].agg(model_agg).reset_index()
|
756 |
+
if direction == "below":
|
757 |
+
df = df[df['score'] <= threshold]
|
758 |
+
else:
|
759 |
+
df = df[df['score'] >= threshold]
|
760 |
+
elif query_type == "model comparison":
|
761 |
+
# df = merged_df
|
762 |
+
# df.reset_index(inplace=True)
|
763 |
+
# df = df.groupby([category])[[model, baseline]].agg(task_agg).reset_index()
|
764 |
+
# df = df[(df[model] - df[baseline] > threshold)]
|
765 |
+
df_baseline = deepcopy(df)
|
766 |
+
|
767 |
+
df = df[df['model'].isin(models)]
|
768 |
+
df = df.groupby([category, 'model'])['score'].agg(task_agg).reset_index()
|
769 |
+
df = df.groupby([category])['score'].agg(model_agg).reset_index()
|
770 |
+
model_str = ', '.join(models)
|
771 |
+
exp_score_id = f'{model_agg}({model_str})' if len(models) > 1 else model_str
|
772 |
+
df = df.sort_values(by=category)
|
773 |
+
|
774 |
+
df_baseline = df_baseline[df_baseline['model'].isin(baselines)]
|
775 |
+
df_baseline = df_baseline.groupby([category, 'model'])['score'].agg(task_agg).reset_index()
|
776 |
+
df_baseline = df_baseline.groupby([category])['score'].agg(baseline_agg).reset_index()
|
777 |
+
model_str = ', '.join(baselines)
|
778 |
+
baseline_score_id = f'{baseline_agg}({model_str})' if len(baselines) > 1 else model_str
|
779 |
+
df_baseline = df_baseline.sort_values(by=category)
|
780 |
+
|
781 |
+
|
782 |
+
df.rename(columns={'score': exp_score_id}, inplace=True)
|
783 |
+
df_baseline.rename(columns={'score': baseline_score_id}, inplace=True)
|
784 |
+
df = pd.merge(df, df_baseline, on=category)
|
785 |
+
df = df[(df[exp_score_id] - df[baseline_score_id] > threshold)]
|
786 |
+
|
787 |
+
elif query_type == "model debugging":
|
788 |
+
model = models
|
789 |
+
print(models)
|
790 |
+
avg_acc = merged_df[model].mean()
|
791 |
+
std = merged_df[model].std()
|
792 |
+
t = avg_acc - std
|
793 |
+
df = df[df['model'] == model]
|
794 |
+
df = df.groupby(['model', category])['score'].agg(task_agg).reset_index()
|
795 |
+
df = df[df['score'] < t]
|
796 |
+
df['mean'] = round(avg_acc, 4)
|
797 |
+
df['std'] = round(std, 4)
|
798 |
+
|
799 |
+
print(df.head())
|
800 |
+
if category == 'index':
|
801 |
+
task_attrs = list(df[category])
|
802 |
+
selected_tasks = task_plan[task_plan[category].isin(task_attrs)]
|
803 |
+
|
804 |
+
if len(selected_tasks) == 0:
|
805 |
+
return gr.DataFrame(None, label="There is no such task.")
|
806 |
+
|
807 |
+
if query_type == "model comparison" and (models and baselines):
|
808 |
+
# selected_tasks[model] = selected_tasks.apply(lambda row: df[df['index'] == row['index']][model].values[0], axis=1)
|
809 |
+
# selected_tasks[baseline] = selected_tasks.apply(lambda row: df[df['index'] == row['index']][baseline].values[0], axis=1)
|
810 |
+
selected_tasks[exp_score_id] = selected_tasks.apply(lambda row: df[df['index'] == row['index']][exp_score_id].values[0], axis=1)
|
811 |
+
selected_tasks[baseline_score_id] = selected_tasks.apply(lambda row: df[df['index'] == row['index']][baseline_score_id].values[0], axis=1)
|
812 |
+
else:
|
813 |
+
selected_tasks['score'] = selected_tasks.apply(lambda row: df[df['index'] == row['index']]['score'].values[0], axis=1)
|
814 |
+
|
815 |
+
print(selected_tasks.head())
|
816 |
+
return gr.DataFrame(selected_tasks, label=f"There are {len(selected_tasks)} (out of {len(task_plan)}) tasks in total.")
|
817 |
+
else:
|
818 |
+
if len(df) == 0:
|
819 |
+
return gr.DataFrame(None, label=f"There is no such {category}.")
|
820 |
+
else:
|
821 |
+
return gr.DataFrame(df, label=f"The total number of such {category} is {len(df)}.")
|
822 |
+
|
823 |
+
|
824 |
+
def find_patterns(selected_tasks, num_patterns, models, baselines, model_agg, baseline_agg):
|
825 |
+
if len(selected_tasks) == 0:
|
826 |
+
return gr.DataFrame(None)
|
827 |
+
print(selected_tasks.head())
|
828 |
+
if 'score' in selected_tasks:
|
829 |
+
scores = selected_tasks['score']
|
830 |
+
# elif model in selected_tasks:
|
831 |
+
# scores = selected_tasks[model]
|
832 |
+
else:
|
833 |
+
scores = None
|
834 |
+
print(scores)
|
835 |
+
|
836 |
+
model_str = ', '.join(models)
|
837 |
+
exp_score_id = f'{model_agg}({model_str})' if len(models) > 1 else model_str
|
838 |
+
if baselines:
|
839 |
+
baseline_str = ', '.join(baselines)
|
840 |
+
baseline_score_id = f'{baseline_agg}({baseline_str})' if len(baselines) > 1 else baseline_str
|
841 |
+
|
842 |
+
tasks_only = selected_tasks
|
843 |
+
all_score_cols = ['score', exp_score_id]
|
844 |
+
if baselines:
|
845 |
+
all_score_cols += [baseline_score_id]
|
846 |
+
for name in all_score_cols:
|
847 |
+
if name in selected_tasks:
|
848 |
+
tasks_only = tasks_only.drop(name, axis=1)
|
849 |
+
results = find_frequent_patterns(k=num_patterns, df=tasks_only, scores=scores)
|
850 |
+
records = []
|
851 |
+
if scores is not None:
|
852 |
+
patterns, scores = results[0], results[1]
|
853 |
+
for pattern, score in zip(patterns, scores):
|
854 |
+
pattern_str = ""
|
855 |
+
for t in pattern[1]:
|
856 |
+
col_name, col_val = t
|
857 |
+
pattern_str += f"{col_name} = {col_val}, "
|
858 |
+
|
859 |
+
record = {'pattern': pattern_str[:-2], 'count': pattern[0], 'score': score} #{model}
|
860 |
+
records.append(record)
|
861 |
+
else:
|
862 |
+
patterns = results
|
863 |
+
for pattern in patterns:
|
864 |
+
pattern_str = ""
|
865 |
+
for t in pattern[1]:
|
866 |
+
col_name, col_val = t
|
867 |
+
pattern_str += f"{col_name} = {col_val}, "
|
868 |
+
|
869 |
+
record = {'pattern': pattern_str[:-2], 'count': pattern[0]}
|
870 |
+
records.append(record)
|
871 |
+
|
872 |
+
df = pd.DataFrame.from_records(records)
|
873 |
+
return gr.DataFrame(df)
|
874 |
+
|
875 |
+
def visualize_task_distribution(selected_tasks, col_name, model1, model2):
|
876 |
+
if not col_name:
|
877 |
+
return None
|
878 |
+
task_plan_cnt = selected_tasks.groupby(col_name)['index'].count().reset_index()
|
879 |
+
task_plan_cnt.rename(columns={'index': 'count'}, inplace=True)
|
880 |
+
task_plan_cnt['frequency (%)'] = round(task_plan_cnt['count'] / len(selected_tasks) * 100, 2)
|
881 |
+
print(task_plan_cnt.head())
|
882 |
+
|
883 |
+
tooltips = [col_name, 'count', 'frequency (%)']
|
884 |
+
base = alt.Chart(task_plan_cnt).encode(
|
885 |
+
alt.Theta("count:Q").stack(True),
|
886 |
+
alt.Color(f"{col_name}:N").legend(),
|
887 |
+
tooltip=tooltips
|
888 |
+
)
|
889 |
+
pie = base.mark_arc(outerRadius=120)
|
890 |
+
|
891 |
+
return pie
|
892 |
+
|
893 |
+
def plot_performance_for_selected_tasks(domain, partition, df, query_type, models, baselines, select_category, vis_category, task_agg, model_agg, baseline_agg, rank, direction, threshold):
|
894 |
+
domain = domain2folder[domain]
|
895 |
+
task_agg = "mean"
|
896 |
+
data_path = f"{BASE_DIR}/{domain}/{partition}/expanded_data.csv"
|
897 |
+
mereged_data_path = f"{BASE_DIR}/{domain}/{partition}/merged_data.csv"
|
898 |
+
|
899 |
+
if not os.path.exists(data_path) or not os.path.exists(mereged_data_path) or len(df) == 0:
|
900 |
+
return None
|
901 |
+
|
902 |
+
select_tasks = select_category == "task id" and vis_category
|
903 |
+
if select_tasks: # select tasks
|
904 |
+
y_val = f'{task_agg}(score):Q'
|
905 |
+
else: # select task categories
|
906 |
+
y_val = f'score:Q'
|
907 |
+
|
908 |
+
if select_category == "task id":
|
909 |
+
select_category = "index"
|
910 |
+
print(df.head())
|
911 |
+
if query_type == "model comparison":
|
912 |
+
# re-format the data for plotting
|
913 |
+
model_str = ', '.join(models)
|
914 |
+
exp_score_id = f'{model_agg}({model_str})' if len(models) > 1 else model_str
|
915 |
+
baseline_str = ', '.join(baselines)
|
916 |
+
baseline_score_id = f'{baseline_agg}({baseline_str})' if len(baselines) > 1 else baseline_str
|
917 |
+
# other_cols = list(df.columns)
|
918 |
+
# other_cols.remove(select_category)
|
919 |
+
print(exp_score_id, baseline_score_id)
|
920 |
+
df = df.melt(id_vars=[select_category], value_vars=[exp_score_id, baseline_score_id])
|
921 |
+
df.rename(columns={'variable': 'model', 'value': 'score'}, inplace=True)
|
922 |
+
print(df.head())
|
923 |
+
|
924 |
+
if select_tasks:
|
925 |
+
merged_df = pd.read_csv(mereged_data_path)
|
926 |
+
df[vis_category] = df.apply(lambda row: merged_df[merged_df.index == row['index']][vis_category].values[0], axis=1)
|
927 |
+
|
928 |
+
num_columns = len(df['model'].unique()) * len(df[f'{vis_category}'].unique())
|
929 |
+
chart = alt.Chart(df).mark_bar().encode(
|
930 |
+
alt.X('model:N',
|
931 |
+
sort=alt.EncodingSortField(field=f'score', order='descending', op=task_agg),
|
932 |
+
axis=alt.Axis(labels=False, tickSize=0, title=None)),
|
933 |
+
alt.Y(y_val, scale=alt.Scale(zero=True), title="accuracy"),
|
934 |
+
alt.Color('model:N').legend(),
|
935 |
+
alt.Column(f'{vis_category}:N', header=alt.Header(titleOrient='bottom', labelOrient='bottom', labelFontSize=20, titleFontSize=20,))
|
936 |
+
).properties(
|
937 |
+
width=num_columns * 30,
|
938 |
+
height=200,
|
939 |
+
title=f"How do models perform by {vis_category}?"
|
940 |
+
)
|
941 |
+
print(num_columns * 50)
|
942 |
+
else:
|
943 |
+
if query_type == "model debugging":
|
944 |
+
y_title = "accuracy"
|
945 |
+
plot_title = f"{models} performs worse than its (mean - std) on these {vis_category}s"
|
946 |
+
models = [models]
|
947 |
+
else:
|
948 |
+
model_str = ', '.join(models)
|
949 |
+
y_title = f"{model_agg} accuracy" if len(models) > 0 else "accuracy"
|
950 |
+
suffix = f"on these tasks (by {vis_category})" if select_category == "index" else f"on these {vis_category}s"
|
951 |
+
if query_type == "top k":
|
952 |
+
plot_title = f"The {model_agg} accuracy of {model_str} is the {'highest' if rank == 'top' else 'lowest'} " + suffix
|
953 |
+
elif query_type == "threshold":
|
954 |
+
plot_title = f"The {model_agg} accuracy of {model_str} is {direction} {threshold} " + suffix
|
955 |
+
|
956 |
+
if select_tasks:
|
957 |
+
expand_df = pd.read_csv(data_path)
|
958 |
+
task_ids = list(df['index'].unique())
|
959 |
+
|
960 |
+
# all_models = (models + baselines) if baselines else models
|
961 |
+
df = expand_df[(expand_df['model'].isin(models)) & (expand_df['task id'].isin(task_ids))]
|
962 |
+
|
963 |
+
num_columns = len(df[f'{vis_category}'].unique())
|
964 |
+
chart = alt.Chart(df).mark_bar().encode(
|
965 |
+
alt.X(f'{vis_category}:N', sort=alt.EncodingSortField(field=f'score', order='ascending', op=task_agg), axis=alt.Axis(labelAngle=-20)), # no title, no label angle),
|
966 |
+
alt.Y(y_val, scale=alt.Scale(zero=True), title=y_title),
|
967 |
+
alt.Color(f'{vis_category}:N').legend(None),
|
968 |
+
).properties(
|
969 |
+
width=num_columns * 30,
|
970 |
+
height=200,
|
971 |
+
title=plot_title
|
972 |
+
)
|
973 |
+
|
974 |
+
chart = chart.configure_title(fontSize=20, offset=5, orient='top', anchor='middle').configure_axis(
|
975 |
+
labelFontSize=20,
|
976 |
+
titleFontSize=20,
|
977 |
+
).configure_legend(
|
978 |
+
labelFontSize=20,
|
979 |
+
titleFontSize=20,
|
980 |
+
labelLimit=200,
|
981 |
+
)
|
982 |
+
return chart
|
983 |
+
|
984 |
+
def sync_vis_category(domain, partition, category):
|
985 |
+
domain = domain2folder[domain]
|
986 |
+
if category and category != "task id":
|
987 |
+
return [gr.Dropdown([category], value=category, label="by task metadata", interactive=False), gr.Dropdown([category], value=category, label="by task metadata", interactive=False)]
|
988 |
+
else:
|
989 |
+
data_path = f"{BASE_DIR}/{domain}/{partition}/task_plan.pkl"
|
990 |
+
if os.path.exists(data_path):
|
991 |
+
data = pickle.load(open(data_path, 'rb'))
|
992 |
+
categories = list(data.columns)
|
993 |
+
return [gr.Dropdown(categories, value=categories[0], label="by task metadata", interactive=True), gr.Dropdown(categories, value=categories[0], label="by task metadata", interactive=True)]
|
994 |
+
else:
|
995 |
+
return [None, None]
|
996 |
+
|
997 |
+
def hide_fpm_and_dist_components(domain, partition, category):
|
998 |
+
domain = domain2folder[domain]
|
999 |
+
print(category)
|
1000 |
+
if category and category != "task id":
|
1001 |
+
num_patterns = gr.Slider(1, 100, 50, step=1.0, label="number of patterns", visible=False)
|
1002 |
+
btn_pattern = gr.Button(value="Find patterns among tasks", visible=False)
|
1003 |
+
|
1004 |
+
table = gr.DataFrame({}, height=250, visible=False)
|
1005 |
+
dist_chart = gr.Plot(visible=False)
|
1006 |
+
|
1007 |
+
col_name = gr.Dropdown([], value=None, label="by task metadata", visible=False)
|
1008 |
+
btn_dist = gr.Button(value="Visualize task distribution", visible=False)
|
1009 |
+
else:
|
1010 |
+
data_path = f"{BASE_DIR}/{domain}/{partition}/task_plan.pkl"
|
1011 |
+
if os.path.exists(data_path):
|
1012 |
+
data = pickle.load(open(data_path, 'rb'))
|
1013 |
+
categories = list(data.columns)
|
1014 |
+
col_name = gr.Dropdown(categories, value=categories[0], label="by task metadata", interactive=True, visible=True)
|
1015 |
+
else:
|
1016 |
+
col_name = gr.Dropdown([], value=None, label="by task metadata", interactive=True, visible=True)
|
1017 |
+
|
1018 |
+
num_patterns = gr.Slider(1, 100, 50, step=1.0, label="number of patterns", interactive=True, visible=True)
|
1019 |
+
btn_pattern = gr.Button(value="Find patterns among tasks", interactive=True, visible=True)
|
1020 |
+
|
1021 |
+
table = gr.DataFrame({}, height=250, interactive=True, visible=True)
|
1022 |
+
dist_chart = gr.Plot(visible=True)
|
1023 |
+
|
1024 |
+
btn_dist = gr.Button(value="Visualize task distribution", interactive=True, visible=True)
|
1025 |
+
return [num_patterns, btn_pattern, table, col_name, btn_dist, dist_chart]
|
1026 |
+
|
1027 |
+
|
1028 |
+
|
1029 |
+
# domains = list_directories(BASE_DIR)
|
1030 |
+
theme = gr.Theme.from_hub('sudeepshouche/minimalist')
|
1031 |
+
theme.font = [gr.themes.GoogleFont("Inconsolata"), "Arial", "sans-serif"] # gr.themes.GoogleFont("Source Sans Pro") # [gr.themes.GoogleFont("Inconsolata"), "Arial", "sans-serif"]
|
1032 |
+
theme.text_size = gr.themes.sizes.text_lg
|
1033 |
+
# theme = theme.set(font=)
|
1034 |
+
|
1035 |
+
demo = gr.Blocks(theme=theme, title="TaskVerse-UI") #
|
1036 |
+
with demo:
|
1037 |
+
with gr.Row():
|
1038 |
+
with gr.Column(scale=1):
|
1039 |
+
gr.Markdown(
|
1040 |
+
r""
|
1041 |
+
)
|
1042 |
+
with gr.Column(scale=1):
|
1043 |
+
gr.Markdown(
|
1044 |
+
r"<h1>Welcome to TaskVerse-UI! </h1>"
|
1045 |
+
)
|
1046 |
+
with gr.Column(scale=1):
|
1047 |
+
gr.Markdown(
|
1048 |
+
r""
|
1049 |
+
)
|
1050 |
+
|
1051 |
+
with gr.Tab("📊 Overview"):
|
1052 |
+
gr.Markdown(
|
1053 |
+
r"<h2>📊 Visualize the overall task distribution and model performance </h2>"
|
1054 |
+
)
|
1055 |
+
|
1056 |
+
with gr.Row():
|
1057 |
+
domain = gr.Radio(domains, label="scenario", scale=2)
|
1058 |
+
partition = gr.Dropdown([], value=None, label="task space of the following task generator", scale=1)
|
1059 |
+
# domain.change(fn=update_partition, inputs=domain, outputs=partition)
|
1060 |
+
|
1061 |
+
|
1062 |
+
gr.Markdown(
|
1063 |
+
r"<h2>Overall task metadata distribution</h2>"
|
1064 |
+
)
|
1065 |
+
|
1066 |
+
with gr.Row():
|
1067 |
+
category = gr.Dropdown([], value=None, label="task metadata")
|
1068 |
+
partition.change(fn=update_category, inputs=[domain, partition], outputs=category)
|
1069 |
+
with gr.Row():
|
1070 |
+
output = gr.Plot()
|
1071 |
+
with gr.Row():
|
1072 |
+
btn = gr.Button(value="Plot")
|
1073 |
+
btn.click(plot_task_distribution, [domain, partition, category], output)
|
1074 |
+
|
1075 |
+
gr.Markdown(
|
1076 |
+
r"<h2>Models' overall performance by task metadata</h2>"
|
1077 |
+
)
|
1078 |
+
with gr.Row():
|
1079 |
+
with gr.Column(scale=2):
|
1080 |
+
models = gr.CheckboxGroup(MODELS, label="model(s)", value=MODELS)
|
1081 |
+
with gr.Column(scale=1):
|
1082 |
+
aggregate = gr.Radio(['mean', 'median', 'min', 'max'], value="mean", label="aggregate models' accuracy by")
|
1083 |
+
with gr.Row():
|
1084 |
+
# with gr.Column(scale=1):
|
1085 |
+
category1 = gr.Dropdown([], value=None, label="task metadata", interactive=True)
|
1086 |
+
category2 = gr.Dropdown([], value=None, label="Optional: second task metadata", interactive=True)
|
1087 |
+
partition.change(fn=update_category, inputs=[domain, partition], outputs=category1)
|
1088 |
+
category1.change(fn=update_category2, inputs=[domain, partition, category1], outputs=category2)
|
1089 |
+
domain.change(fn=update_partition_and_models, inputs=domain, outputs=[partition, models])
|
1090 |
+
with gr.Row():
|
1091 |
+
output = gr.Plot()
|
1092 |
+
with gr.Row():
|
1093 |
+
btn = gr.Button(value="Plot")
|
1094 |
+
btn.click(plot_all, [domain, partition, models, category1, category2, aggregate], output)
|
1095 |
+
# gr.Examples(["hello", "bonjour", "merhaba"], input_textbox)
|
1096 |
+
|
1097 |
+
|
1098 |
+
with gr.Tab("✨ Embedding"):
|
1099 |
+
gr.Markdown(
|
1100 |
+
r"<h2>✨ Visualize the tasks' embeddings in the 2D space </h2>"
|
1101 |
+
)
|
1102 |
+
with gr.Row():
|
1103 |
+
domain2 = gr.Radio(domains, label="scenario", scale=2)
|
1104 |
+
# domain = gr.Dropdown(domains, value=domains[0], label="scenario")
|
1105 |
+
partition2 = gr.Dropdown([], value=None, label="task space of the following task generator", scale=1)
|
1106 |
+
category2 = gr.Dropdown([], value=None, label="colored by task metadata", scale=1)
|
1107 |
+
domain2.change(fn=update_partition, inputs=domain2, outputs=partition2)
|
1108 |
+
partition2.change(fn=update_category, inputs=[domain2, partition2], outputs=category2)
|
1109 |
+
|
1110 |
+
with gr.Row():
|
1111 |
+
output2 = gr.Plot()
|
1112 |
+
with gr.Row():
|
1113 |
+
btn = gr.Button(value="Run")
|
1114 |
+
btn.click(plot_embedding, [domain2, partition2, category2], output2)
|
1115 |
+
|
1116 |
+
|
1117 |
+
with gr.Tab("❓ Query"):
|
1118 |
+
gr.Markdown(
|
1119 |
+
r"<h2>❓ Find out the answers to your queries by finding and visualizing the relevant tasks and models' performance </h2>"
|
1120 |
+
)
|
1121 |
+
with gr.Row(equal_height=True):
|
1122 |
+
domain = gr.Radio(domains, label="scenario", scale=2)
|
1123 |
+
partition = gr.Dropdown([], value=None, label="task space of the following task generator", scale=1)
|
1124 |
+
with gr.Row():
|
1125 |
+
query1 = "top k"
|
1126 |
+
query2 = "threshold"
|
1127 |
+
query3 = "model debugging"
|
1128 |
+
query4 = "model comparison"
|
1129 |
+
query_type = gr.Radio([query1, query2, query3, query4], value="top k", label=r"query type")
|
1130 |
+
with gr.Row():
|
1131 |
+
with gr.Accordion("See more details about the query type"):
|
1132 |
+
gr.Markdown(
|
1133 |
+
r"<ul><li>Top k: Find the k tasks or task metadata that the model(s) perform the best or worst on</li><li>Threshold: Find the tasks or task metadata where the model(s)' performance is greater or lower than a given threshold t</li><li>Model debugging: Find the tasks or task metadata where a model performs significantly worse than its average performance (by one standard deviation)</li><li>Model comparison: Find the tasks or task metadata where some model(s) perform better or worse than the baseline(s) by a given threshold t</li></ul>"
|
1134 |
+
)
|
1135 |
+
|
1136 |
+
with gr.Row():
|
1137 |
+
gr.Markdown(r"<h2>Help me find the</h2>")
|
1138 |
+
with gr.Row(equal_height=True):
|
1139 |
+
# with gr.Column(scale=1):
|
1140 |
+
rank = gr.Radio(['top', 'bottom'], value='top', label=" ", interactive=True, visible=True)
|
1141 |
+
# with gr.Column(scale=2):
|
1142 |
+
k = gr.Slider(1, 10, 5 // 2, step=1.0, label="k", interactive=True, visible=True)
|
1143 |
+
# with gr.Column(scale=2):
|
1144 |
+
category = gr.Dropdown([], value=None, label="tasks / task metadata", interactive=True)
|
1145 |
+
|
1146 |
+
with gr.Row():
|
1147 |
+
md1 = gr.Markdown(r"<h2>ranked by the </h2>")
|
1148 |
+
|
1149 |
+
with gr.Row(equal_height=True):
|
1150 |
+
# with gr.Column(scale=1, min_width=100):
|
1151 |
+
# model_aggregate = gr.Radio(['mean', 'median', 'min', 'max'], value="mean", label=" ", interactive=True, visible=True)
|
1152 |
+
model_aggregate = gr.Dropdown(['mean', 'median', 'min', 'max'], value="mean", label=" ", interactive=True, visible=True, scale=1)
|
1153 |
+
# with gr.Column(scale=8):
|
1154 |
+
model = gr.Dropdown(MODELS, value=MODELS, label="of model(s)", multiselect=True, interactive=True, visible=True, scale=2)
|
1155 |
+
# with gr.Column(scale=1, min_width=100):
|
1156 |
+
# aggregate = gr.Dropdown(['mean', 'median', 'min', 'max'], value="mean", label=" ", interactive=True, visible=True, scale=1)
|
1157 |
+
with gr.Row():
|
1158 |
+
md3 = gr.Markdown(r"")
|
1159 |
+
with gr.Row(equal_height=True):
|
1160 |
+
baseline_aggregate = gr.Dropdown(['mean', 'median', 'min', 'max'], value="mean", label=" ", interactive=True, visible=False, scale=1)
|
1161 |
+
baseline = gr.Dropdown(MODELS, value=None, label="of baseline(s)'", visible=False, scale=2)
|
1162 |
+
# aggregate = gr.Radio(['mean', 'median', 'min', 'max'], value="mean", label=" ", interactive=True, visible=True)
|
1163 |
+
# with gr.Column(scale=1, min_width=50):
|
1164 |
+
with gr.Row():
|
1165 |
+
md2 = gr.Markdown(r"<h2>accuracy</h2>")
|
1166 |
+
|
1167 |
+
with gr.Row():
|
1168 |
+
# baseline_aggregate = gr.Radio(['mean', 'median', 'min', 'max'], value="mean", label="task category aggregate (over baselines)", visible=False)
|
1169 |
+
direction = gr.Radio(['above', 'below'], value='above', label=" ", visible=False)
|
1170 |
+
threshold = gr.Slider(0, 1, 0.0, label="threshold", visible=False)
|
1171 |
+
|
1172 |
+
widgets = [rank, k, direction, threshold, model, model_aggregate, baseline, baseline_aggregate, md1, md2, md3]
|
1173 |
+
partition.change(fn=update_category, inputs=[domain, partition], outputs=category)
|
1174 |
+
query_type.change(update_widgets, [domain, partition, category, query_type], widgets)
|
1175 |
+
domain.change(fn=update_partition_and_models_and_baselines, inputs=domain, outputs=[partition, model, baseline])
|
1176 |
+
with gr.Row():
|
1177 |
+
df = gr.DataFrame({}, height=200)
|
1178 |
+
btn = gr.Button(value="Find tasks / task metadata")
|
1179 |
+
btn.click(select_tasks, [domain, partition, category, query_type, aggregate, model, model_aggregate, rank, k, direction, threshold, baseline, baseline_aggregate], df)
|
1180 |
+
|
1181 |
+
with gr.Row():
|
1182 |
+
plot = gr.Plot()
|
1183 |
+
with gr.Row():
|
1184 |
+
col_name2 = gr.Dropdown([], value=None, label="by task metadata", interactive=True)
|
1185 |
+
partition.change(fn=update_category, inputs=[domain, partition], outputs=col_name2)
|
1186 |
+
btn_plot = gr.Button(value="Plot model performance", interactive=True)
|
1187 |
+
btn_plot.click(plot_performance_for_selected_tasks, [domain, partition, df, query_type, model, baseline, category, col_name2, aggregate, model_aggregate, baseline_aggregate, rank, direction, threshold], plot)
|
1188 |
+
|
1189 |
+
with gr.Row():
|
1190 |
+
dist_chart = gr.Plot()
|
1191 |
+
with gr.Row():
|
1192 |
+
col_name = gr.Dropdown([], value=None, label="by task metadata", interactive=True)
|
1193 |
+
partition.change(fn=update_category, inputs=[domain, partition], outputs=col_name)
|
1194 |
+
btn_dist = gr.Button(value="Visualize task distribution", interactive=True)
|
1195 |
+
btn_dist.click(visualize_task_distribution, [df, col_name, model, baseline], dist_chart)
|
1196 |
+
|
1197 |
+
with gr.Row():
|
1198 |
+
table = gr.DataFrame({}, height=250)
|
1199 |
+
with gr.Row():
|
1200 |
+
num_patterns = gr.Slider(1, 100, 50, step=1.0, label="number of patterns")
|
1201 |
+
btn_pattern = gr.Button(value="Find patterns among tasks")
|
1202 |
+
btn_pattern.click(find_patterns, [df, num_patterns, model, baseline], table)
|
1203 |
+
|
1204 |
+
category.change(fn=hide_fpm_and_dist_components, inputs=[domain, partition, category], outputs=[num_patterns, btn_pattern, table, col_name, btn_dist, dist_chart])
|
1205 |
+
category.change(fn=sync_vis_category, inputs=[domain, partition, category], outputs=[col_name, col_name2])
|
1206 |
+
category.change(fn=update_k, inputs=[domain, partition, category], outputs=k)
|
1207 |
+
|
1208 |
+
|
1209 |
+
with gr.Tab("😮 Surprisingness"):
|
1210 |
+
gr.Markdown(r"<h2>😮 Find out the tasks a model is surprisingly good or bad at compared to similar tasks</h2>")
|
1211 |
+
with gr.Row():
|
1212 |
+
domain3 = gr.Radio(domains, label="scenario", scale=2)
|
1213 |
+
partition3 = gr.Dropdown([], value=None, label="task space of the following task generator", scale=1)
|
1214 |
+
with gr.Row():
|
1215 |
+
model3 = gr.Dropdown(MODELS, value=MODELS[0], label="model", interactive=True, visible=True)
|
1216 |
+
k3 = gr.Slider(1, 100, 50, step=1.0, label="number of surprising tasks", interactive=True)
|
1217 |
+
num_neighbors = gr.Slider(1, 100, 50, step=1.0, label="number of neighbors", interactive=True)
|
1218 |
+
rank3 = gr.Radio(['top', 'bottom'], value='top', label=" ", interactive=True, visible=True)
|
1219 |
+
domain3.change(fn=update_partition_and_models, inputs=domain3, outputs=[partition3, model3])
|
1220 |
+
# partition3.change(fn=update_k, inputs=[domain3, partition3], outputs=k3)
|
1221 |
+
with gr.Row():
|
1222 |
+
output3 = gr.Plot()
|
1223 |
+
with gr.Row():
|
1224 |
+
btn = gr.Button(value="Plot")
|
1225 |
+
btn.click(plot_surprisingness, [domain3, partition3, model3, rank3, k3, num_neighbors], output3)
|
1226 |
+
|
1227 |
+
|
1228 |
+
# if __name__ == "__main__":
|
1229 |
+
demo.launch(share=True)
|
1230 |
+
|
1231 |
+
|
db/2d/2d-how-many/embeddings.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:35cfc281579e9d837218ac6edd58db0475c4728e526eb7d0f005d95772229692
|
3 |
+
size 52955299
|
db/2d/2d-how-many/expanded_data.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
db/2d/2d-how-many/gt.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1afea495ff6a5425049d71163c4607af0942d1d750cc3625ecc310ddec123031
|
3 |
+
size 828220
|
db/2d/2d-how-many/instructblip_vicuna13b_surprise.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e358eb20d0793cef91ee2e78c9257baa270f9ba5d96964b6605651048c7e0c1e
|
3 |
+
size 48404804
|
db/2d/2d-how-many/instructblip_vicuna7b_surprise.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4347576213a57fdbc4a62c450072db4488ff83f922920daf8a5f8e48423be26e
|
3 |
+
size 48404804
|
db/2d/2d-how-many/llava15_13b_surprise.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b2cae2611f360876a8e9386cd4cae2491512fece11f3c1c963dafedaa5a7b3d4
|
3 |
+
size 48404804
|
db/2d/2d-how-many/llava15_7b_surprise.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2f1afdc0e89ee8acbcf31992b66c746b1e56e0f6b6b295f78a63a3e7f624b33e
|
3 |
+
size 48404804
|
db/2d/2d-how-many/merged_data.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
db/2d/2d-how-many/path.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
db/2d/2d-how-many/qa.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e82b51a17f31e4f053b7c6cdc22a3f9dd437dc22436757a4e553ba8506f9cf22
|
3 |
+
size 901939
|
db/2d/2d-how-many/qwenvl_chat_surprise.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:75307671d6e0c9f8be5375113acac6b53dcaae4a9e5fd3b0ce2ba00fc76c30da
|
3 |
+
size 48404804
|
db/2d/2d-how-many/qwenvl_surprise.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0035392b47d7158672b56f54b13d4f738c161cc8939e88b242e909458c6d3ad2
|
3 |
+
size 48404804
|
db/2d/2d-how-many/task_plan.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:deaa99058099c23f6011e923e8abcd4e16b0f941a7172462c606b287a599d0a0
|
3 |
+
size 861565
|
db/2d/2d-what-attribute/embeddings.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6956526b21a3ee60a05e86f0c2bad028644d03d42f0216a538ce97016f1b699c
|
3 |
+
size 39137443
|
db/2d/2d-what-attribute/expanded_data.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
db/2d/2d-what-attribute/gt.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5b367e0455f641e152fe469a0a7832d8f626a4b9657052342d494ad7a180ff42
|
3 |
+
size 612316
|
db/2d/2d-what-attribute/instructblip_vicuna13b_surprise.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9a20ad832ca2a26f5efe5328c1f3e9a88fda8e55b5e26cad3817e1223ec889af
|
3 |
+
size 35774420
|
db/2d/2d-what-attribute/instructblip_vicuna7b_surprise.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d0632f15894b374a7e67a8bb6f53fdcf84d344cc310e097adc1f724364eaf2e7
|
3 |
+
size 35774420
|
db/2d/2d-what-attribute/llava15_13b_surprise.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:99c5a95c3e2de9bd0371060a6886f5bf1b4553120dccdcf38f790116e0712b76
|
3 |
+
size 35774420
|
db/2d/2d-what-attribute/llava15_7b_surprise.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e0ee4d8a941b1f3176e74bea7e158141c2102f4403acf6b7aa3723b7f2e462a4
|
3 |
+
size 35774420
|
db/2d/2d-what-attribute/merged_data.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
db/2d/2d-what-attribute/path.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
db/2d/2d-what-attribute/qa.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2e5c3b625e90eea95aac69a176772422c1fb0b882cdee838a7e6c56fbe17b50a
|
3 |
+
size 980447
|
db/2d/2d-what-attribute/qwenvl_chat_surprise.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ac6c585bebeb3aaaed8dac2c7c4420d7d2e780a735f57b3e1e5b617f87ea8160
|
3 |
+
size 35774420
|
db/2d/2d-what-attribute/qwenvl_surprise.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9c3d7d5aec0726c1f51b7c65ce5c21e9beb9fda2598efe29e96c9788a8b60bdd
|
3 |
+
size 35774420
|
db/2d/2d-what-attribute/task_plan.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e56dc9b74b81ec36a32811ddc3b6a85fbcf23992185f801d52fbce40516974cd
|
3 |
+
size 783662
|
db/2d/2d-what/embeddings.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b089c1028a5d2f63609739d53e1c7630f66e4cba66d39a93bdf427565ef29104
|
3 |
+
size 39137443
|
db/2d/2d-what/expanded_data.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
db/2d/2d-what/gt.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f7fffa0ff67eab9da2ea4dae3a005e1f9b75c10d12e6ca376dd5072297edf2d5
|
3 |
+
size 612316
|
db/2d/2d-what/instructblip_vicuna13b_surprise.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e224cfb927268e4a43d289bc5b2025d1b2c767bfca14e284c32b1612a3e4d452
|
3 |
+
size 35774420
|
db/2d/2d-what/instructblip_vicuna7b_surprise.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9fef83cca3ed3fa7fce662b37e6085bb1f3373c91e4306eb2a79e79e807854f7
|
3 |
+
size 35774420
|
db/2d/2d-what/llava15_13b_surprise.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6cea6a0cc75170114f6f2725fe71c7fd353038b22d144a1afa2545579cdb5894
|
3 |
+
size 35774420
|
db/2d/2d-what/llava15_7b_surprise.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1ec12e11122cc629c502de7b8981a482692d20779704659feda4250f01bd5e9d
|
3 |
+
size 35774420
|
db/2d/2d-what/merged_data.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
db/2d/2d-what/path.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
db/2d/2d-what/qa.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:907fb5a1fe2442e5e4c5837020633d970911f187043e0fc481cf9c06940ab643
|
3 |
+
size 807018
|
db/2d/2d-what/qwenvl_chat_surprise.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ad629744d9f58f163e74cf6e7126617c331681aae15700f5279df8949155b881
|
3 |
+
size 35774420
|
db/2d/2d-what/qwenvl_surprise.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7bf48191df156d0618c524296077992fd75417fa2d7b03dbcc1628319d3989a5
|
3 |
+
size 35774420
|
db/2d/2d-what/task_plan.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3113b3b2adbb2bb8088ca4ae86d654da511f783ddbf1ce98fff86cd864336225
|
3 |
+
size 783652
|
db/2d/2d-where-attribute/embeddings.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b8b38f46605548c2fc198a3b3d751a999aa28495a95a52e22a29b859f6a820e7
|
3 |
+
size 39137443
|
db/2d/2d-where-attribute/expanded_data.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
db/2d/2d-where-attribute/gt.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:22fe402eebadfb265f0186a2aee934da6d8144daa10a52173cf583ff4b0acec5
|
3 |
+
size 612316
|
db/2d/2d-where-attribute/instructblip_vicuna13b_surprise.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:48ad5886d1c0f90903c8857883b4b589f147f89e1aaa2bb68cff3e1d5707d8ce
|
3 |
+
size 35774420
|
db/2d/2d-where-attribute/instructblip_vicuna7b_surprise.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:855e2037394af1adfe6d30906aeb038a2672d3d1ee8773c98844a63bc6aa66f1
|
3 |
+
size 35774420
|
db/2d/2d-where-attribute/llava15_13b_surprise.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5a438d2b5617d58e08e9321b6a9c0907c08fdd2165103617331ebb3d288410d7
|
3 |
+
size 35774420
|
db/2d/2d-where-attribute/llava15_7b_surprise.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:93f420d01d0c87147c218eb76277c78d220acab084cf91443704cd5fb25daaf3
|
3 |
+
size 35774420
|
db/2d/2d-where-attribute/merged_data.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
db/2d/2d-where-attribute/path.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
db/2d/2d-where-attribute/qa.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9e45587db39e2316974b4119d2825a27dc8284b46e1d7da643241c5c100ce879
|
3 |
+
size 601802
|