Spaces:
Running
Running
Update models.py
Browse files
models.py
CHANGED
@@ -1,533 +1,533 @@
|
|
1 |
-
import copy
|
2 |
-
import math
|
3 |
-
import torch
|
4 |
-
from torch import nn
|
5 |
-
from torch.nn import functional as F
|
6 |
-
|
7 |
-
import commons
|
8 |
-
import modules
|
9 |
-
import attentions
|
10 |
-
import monotonic_align
|
11 |
-
|
12 |
-
from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d
|
13 |
-
from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
|
14 |
-
from commons import init_weights, get_padding
|
15 |
-
|
16 |
-
|
17 |
-
class StochasticDurationPredictor(nn.Module):
|
18 |
-
def __init__(self, in_channels, filter_channels, kernel_size, p_dropout, n_flows=4, gin_channels=0):
|
19 |
-
super().__init__()
|
20 |
-
filter_channels = in_channels # it needs to be removed from future version.
|
21 |
-
self.in_channels = in_channels
|
22 |
-
self.filter_channels = filter_channels
|
23 |
-
self.kernel_size = kernel_size
|
24 |
-
self.p_dropout = p_dropout
|
25 |
-
self.n_flows = n_flows
|
26 |
-
self.gin_channels = gin_channels
|
27 |
-
|
28 |
-
self.log_flow = modules.Log()
|
29 |
-
self.flows = nn.ModuleList()
|
30 |
-
self.flows.append(modules.ElementwiseAffine(2))
|
31 |
-
for i in range(n_flows):
|
32 |
-
self.flows.append(modules.ConvFlow(2, filter_channels, kernel_size, n_layers=3))
|
33 |
-
self.flows.append(modules.Flip())
|
34 |
-
|
35 |
-
self.post_pre = nn.Conv1d(1, filter_channels, 1)
|
36 |
-
self.post_proj = nn.Conv1d(filter_channels, filter_channels, 1)
|
37 |
-
self.post_convs = modules.DDSConv(filter_channels, kernel_size, n_layers=3, p_dropout=p_dropout)
|
38 |
-
self.post_flows = nn.ModuleList()
|
39 |
-
self.post_flows.append(modules.ElementwiseAffine(2))
|
40 |
-
for i in range(4):
|
41 |
-
self.post_flows.append(modules.ConvFlow(2, filter_channels, kernel_size, n_layers=3))
|
42 |
-
self.post_flows.append(modules.Flip())
|
43 |
-
|
44 |
-
self.pre = nn.Conv1d(in_channels, filter_channels, 1)
|
45 |
-
self.proj = nn.Conv1d(filter_channels, filter_channels, 1)
|
46 |
-
self.convs = modules.DDSConv(filter_channels, kernel_size, n_layers=3, p_dropout=p_dropout)
|
47 |
-
if gin_channels != 0:
|
48 |
-
self.cond = nn.Conv1d(gin_channels, filter_channels, 1)
|
49 |
-
|
50 |
-
def forward(self, x, x_mask, w=None, g=None, reverse=False, noise_scale=1.0):
|
51 |
-
x = torch.detach(x)
|
52 |
-
x = self.pre(x)
|
53 |
-
if g is not None:
|
54 |
-
g = torch.detach(g)
|
55 |
-
x = x + self.cond(g)
|
56 |
-
x = self.convs(x, x_mask)
|
57 |
-
x = self.proj(x) * x_mask
|
58 |
-
|
59 |
-
if not reverse:
|
60 |
-
flows = self.flows
|
61 |
-
assert w is not None
|
62 |
-
|
63 |
-
logdet_tot_q = 0
|
64 |
-
h_w = self.post_pre(w)
|
65 |
-
h_w = self.post_convs(h_w, x_mask)
|
66 |
-
h_w = self.post_proj(h_w) * x_mask
|
67 |
-
e_q = torch.randn(w.size(0), 2, w.size(2)).to(device=x.device, dtype=x.dtype) * x_mask
|
68 |
-
z_q = e_q
|
69 |
-
for flow in self.post_flows:
|
70 |
-
z_q, logdet_q = flow(z_q, x_mask, g=(x + h_w))
|
71 |
-
logdet_tot_q += logdet_q
|
72 |
-
z_u, z1 = torch.split(z_q, [1, 1], 1)
|
73 |
-
u = torch.sigmoid(z_u) * x_mask
|
74 |
-
z0 = (w - u) * x_mask
|
75 |
-
logdet_tot_q += torch.sum((F.logsigmoid(z_u) + F.logsigmoid(-z_u)) * x_mask, [1,2])
|
76 |
-
logq = torch.sum(-0.5 * (math.log(2*math.pi) + (e_q**2)) * x_mask, [1,2]) - logdet_tot_q
|
77 |
-
|
78 |
-
logdet_tot = 0
|
79 |
-
z0, logdet = self.log_flow(z0, x_mask)
|
80 |
-
logdet_tot += logdet
|
81 |
-
z = torch.cat([z0, z1], 1)
|
82 |
-
for flow in flows:
|
83 |
-
z, logdet = flow(z, x_mask, g=x, reverse=reverse)
|
84 |
-
logdet_tot = logdet_tot + logdet
|
85 |
-
nll = torch.sum(0.5 * (math.log(2*math.pi) + (z**2)) * x_mask, [1,2]) - logdet_tot
|
86 |
-
return nll + logq # [b]
|
87 |
-
else:
|
88 |
-
flows = list(reversed(self.flows))
|
89 |
-
flows = flows[:-2] + [flows[-1]] # remove a useless vflow
|
90 |
-
z = torch.randn(x.size(0), 2, x.size(2)).to(device=x.device, dtype=x.dtype) * noise_scale
|
91 |
-
for flow in flows:
|
92 |
-
z = flow(z, x_mask, g=x, reverse=reverse)
|
93 |
-
z0, z1 = torch.split(z, [1, 1], 1)
|
94 |
-
logw = z0
|
95 |
-
return logw
|
96 |
-
|
97 |
-
|
98 |
-
class DurationPredictor(nn.Module):
|
99 |
-
def __init__(self, in_channels, filter_channels, kernel_size, p_dropout, gin_channels=0):
|
100 |
-
super().__init__()
|
101 |
-
|
102 |
-
self.in_channels = in_channels
|
103 |
-
self.filter_channels = filter_channels
|
104 |
-
self.kernel_size = kernel_size
|
105 |
-
self.p_dropout = p_dropout
|
106 |
-
self.gin_channels = gin_channels
|
107 |
-
|
108 |
-
self.drop = nn.Dropout(p_dropout)
|
109 |
-
self.conv_1 = nn.Conv1d(in_channels, filter_channels, kernel_size, padding=kernel_size//2)
|
110 |
-
self.norm_1 = modules.LayerNorm(filter_channels)
|
111 |
-
self.conv_2 = nn.Conv1d(filter_channels, filter_channels, kernel_size, padding=kernel_size//2)
|
112 |
-
self.norm_2 = modules.LayerNorm(filter_channels)
|
113 |
-
self.proj = nn.Conv1d(filter_channels, 1, 1)
|
114 |
-
|
115 |
-
if gin_channels != 0:
|
116 |
-
self.cond = nn.Conv1d(gin_channels, in_channels, 1)
|
117 |
-
|
118 |
-
def forward(self, x, x_mask, g=None):
|
119 |
-
x = torch.detach(x)
|
120 |
-
if g is not None:
|
121 |
-
g = torch.detach(g)
|
122 |
-
x = x + self.cond(g)
|
123 |
-
x = self.conv_1(x * x_mask)
|
124 |
-
x = torch.relu(x)
|
125 |
-
x = self.norm_1(x)
|
126 |
-
x = self.drop(x)
|
127 |
-
x = self.conv_2(x * x_mask)
|
128 |
-
x = torch.relu(x)
|
129 |
-
x = self.norm_2(x)
|
130 |
-
x = self.drop(x)
|
131 |
-
x = self.proj(x * x_mask)
|
132 |
-
return x * x_mask
|
133 |
-
|
134 |
-
|
135 |
-
class TextEncoder(nn.Module):
|
136 |
-
def __init__(self,
|
137 |
-
n_vocab,
|
138 |
-
out_channels,
|
139 |
-
hidden_channels,
|
140 |
-
filter_channels,
|
141 |
-
n_heads,
|
142 |
-
n_layers,
|
143 |
-
kernel_size,
|
144 |
-
p_dropout):
|
145 |
-
super().__init__()
|
146 |
-
self.n_vocab = n_vocab
|
147 |
-
self.out_channels = out_channels
|
148 |
-
self.hidden_channels = hidden_channels
|
149 |
-
self.filter_channels = filter_channels
|
150 |
-
self.n_heads = n_heads
|
151 |
-
self.n_layers = n_layers
|
152 |
-
self.kernel_size = kernel_size
|
153 |
-
self.p_dropout = p_dropout
|
154 |
-
|
155 |
-
self.emb = nn.Embedding(n_vocab, hidden_channels)
|
156 |
-
nn.init.normal_(self.emb.weight, 0.0, hidden_channels**-0.5)
|
157 |
-
|
158 |
-
self.encoder = attentions.Encoder(
|
159 |
-
hidden_channels,
|
160 |
-
filter_channels,
|
161 |
-
n_heads,
|
162 |
-
n_layers,
|
163 |
-
kernel_size,
|
164 |
-
p_dropout)
|
165 |
-
self.proj= nn.Conv1d(hidden_channels, out_channels * 2, 1)
|
166 |
-
|
167 |
-
def forward(self, x, x_lengths):
|
168 |
-
x = self.emb(x) * math.sqrt(self.hidden_channels) # [b, t, h]
|
169 |
-
x = torch.transpose(x, 1, -1) # [b, h, t]
|
170 |
-
x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype)
|
171 |
-
|
172 |
-
x = self.encoder(x * x_mask, x_mask)
|
173 |
-
stats = self.proj(x) * x_mask
|
174 |
-
|
175 |
-
m, logs = torch.split(stats, self.out_channels, dim=1)
|
176 |
-
return x, m, logs, x_mask
|
177 |
-
|
178 |
-
|
179 |
-
class ResidualCouplingBlock(nn.Module):
|
180 |
-
def __init__(self,
|
181 |
-
channels,
|
182 |
-
hidden_channels,
|
183 |
-
kernel_size,
|
184 |
-
dilation_rate,
|
185 |
-
n_layers,
|
186 |
-
n_flows=4,
|
187 |
-
gin_channels=0):
|
188 |
-
super().__init__()
|
189 |
-
self.channels = channels
|
190 |
-
self.hidden_channels = hidden_channels
|
191 |
-
self.kernel_size = kernel_size
|
192 |
-
self.dilation_rate = dilation_rate
|
193 |
-
self.n_layers = n_layers
|
194 |
-
self.n_flows = n_flows
|
195 |
-
self.gin_channels = gin_channels
|
196 |
-
|
197 |
-
self.flows = nn.ModuleList()
|
198 |
-
for i in range(n_flows):
|
199 |
-
self.flows.append(modules.ResidualCouplingLayer(channels, hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=gin_channels, mean_only=True))
|
200 |
-
self.flows.append(modules.Flip())
|
201 |
-
|
202 |
-
def forward(self, x, x_mask, g=None, reverse=False):
|
203 |
-
if not reverse:
|
204 |
-
for flow in self.flows:
|
205 |
-
x, _ = flow(x, x_mask, g=g, reverse=reverse)
|
206 |
-
else:
|
207 |
-
for flow in reversed(self.flows):
|
208 |
-
x = flow(x, x_mask, g=g, reverse=reverse)
|
209 |
-
return x
|
210 |
-
|
211 |
-
|
212 |
-
class PosteriorEncoder(nn.Module):
|
213 |
-
def __init__(self,
|
214 |
-
in_channels,
|
215 |
-
out_channels,
|
216 |
-
hidden_channels,
|
217 |
-
kernel_size,
|
218 |
-
dilation_rate,
|
219 |
-
n_layers,
|
220 |
-
gin_channels=0):
|
221 |
-
super().__init__()
|
222 |
-
self.in_channels = in_channels
|
223 |
-
self.out_channels = out_channels
|
224 |
-
self.hidden_channels = hidden_channels
|
225 |
-
self.kernel_size = kernel_size
|
226 |
-
self.dilation_rate = dilation_rate
|
227 |
-
self.n_layers = n_layers
|
228 |
-
self.gin_channels = gin_channels
|
229 |
-
|
230 |
-
self.pre = nn.Conv1d(in_channels, hidden_channels, 1)
|
231 |
-
self.enc = modules.WN(hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=gin_channels)
|
232 |
-
self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
|
233 |
-
|
234 |
-
def forward(self, x, x_lengths, g=None):
|
235 |
-
x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype)
|
236 |
-
x = self.pre(x) * x_mask
|
237 |
-
x = self.enc(x, x_mask, g=g)
|
238 |
-
stats = self.proj(x) * x_mask
|
239 |
-
m, logs = torch.split(stats, self.out_channels, dim=1)
|
240 |
-
z = (m + torch.randn_like(m) * torch.exp(logs)) * x_mask
|
241 |
-
return z, m, logs, x_mask
|
242 |
-
|
243 |
-
|
244 |
-
class Generator(torch.nn.Module):
|
245 |
-
def __init__(self, initial_channel, resblock, resblock_kernel_sizes, resblock_dilation_sizes, upsample_rates, upsample_initial_channel, upsample_kernel_sizes, gin_channels=0):
|
246 |
-
super(Generator, self).__init__()
|
247 |
-
self.num_kernels = len(resblock_kernel_sizes)
|
248 |
-
self.num_upsamples = len(upsample_rates)
|
249 |
-
self.conv_pre = Conv1d(initial_channel, upsample_initial_channel, 7, 1, padding=3)
|
250 |
-
resblock = modules.ResBlock1 if resblock == '1' else modules.ResBlock2
|
251 |
-
|
252 |
-
self.ups = nn.ModuleList()
|
253 |
-
for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
|
254 |
-
self.ups.append(weight_norm(
|
255 |
-
ConvTranspose1d(upsample_initial_channel//(2**i), upsample_initial_channel//(2**(i+1)),
|
256 |
-
k, u, padding=(k-u)//2)))
|
257 |
-
|
258 |
-
self.resblocks = nn.ModuleList()
|
259 |
-
for i in range(len(self.ups)):
|
260 |
-
ch = upsample_initial_channel//(2**(i+1))
|
261 |
-
for j, (k, d) in enumerate(zip(resblock_kernel_sizes, resblock_dilation_sizes)):
|
262 |
-
self.resblocks.append(resblock(ch, k, d))
|
263 |
-
|
264 |
-
self.conv_post = Conv1d(ch, 1, 7, 1, padding=3, bias=False)
|
265 |
-
self.ups.apply(init_weights)
|
266 |
-
|
267 |
-
if gin_channels != 0:
|
268 |
-
self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1)
|
269 |
-
|
270 |
-
def forward(self, x, g=None):
|
271 |
-
x = self.conv_pre(x)
|
272 |
-
if g is not None:
|
273 |
-
x = x + self.cond(g)
|
274 |
-
|
275 |
-
for i in range(self.num_upsamples):
|
276 |
-
x = F.leaky_relu(x, modules.LRELU_SLOPE)
|
277 |
-
x = self.ups[i](x)
|
278 |
-
xs = None
|
279 |
-
for j in range(self.num_kernels):
|
280 |
-
if xs is None:
|
281 |
-
xs = self.resblocks[i*self.num_kernels+j](x)
|
282 |
-
else:
|
283 |
-
xs += self.resblocks[i*self.num_kernels+j](x)
|
284 |
-
x = xs / self.num_kernels
|
285 |
-
x = F.leaky_relu(x)
|
286 |
-
x = self.conv_post(x)
|
287 |
-
x = torch.tanh(x)
|
288 |
-
|
289 |
-
return x
|
290 |
-
|
291 |
-
def remove_weight_norm(self):
|
292 |
-
print('Removing weight norm...')
|
293 |
-
for l in self.ups:
|
294 |
-
remove_weight_norm(l)
|
295 |
-
for l in self.resblocks:
|
296 |
-
l.remove_weight_norm()
|
297 |
-
|
298 |
-
|
299 |
-
class DiscriminatorP(torch.nn.Module):
|
300 |
-
def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False):
|
301 |
-
super(DiscriminatorP, self).__init__()
|
302 |
-
self.period = period
|
303 |
-
self.use_spectral_norm = use_spectral_norm
|
304 |
-
norm_f = weight_norm if use_spectral_norm == False else spectral_norm
|
305 |
-
self.convs = nn.ModuleList([
|
306 |
-
norm_f(Conv2d(1, 32, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
|
307 |
-
norm_f(Conv2d(32, 128, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
|
308 |
-
norm_f(Conv2d(128, 512, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
|
309 |
-
norm_f(Conv2d(512, 1024, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
|
310 |
-
norm_f(Conv2d(1024, 1024, (kernel_size, 1), 1, padding=(get_padding(kernel_size, 1), 0))),
|
311 |
-
])
|
312 |
-
self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0)))
|
313 |
-
|
314 |
-
def forward(self, x):
|
315 |
-
fmap = []
|
316 |
-
|
317 |
-
# 1d to 2d
|
318 |
-
b, c, t = x.shape
|
319 |
-
if t % self.period != 0: # pad first
|
320 |
-
n_pad = self.period - (t % self.period)
|
321 |
-
x = F.pad(x, (0, n_pad), "reflect")
|
322 |
-
t = t + n_pad
|
323 |
-
x = x.view(b, c, t // self.period, self.period)
|
324 |
-
|
325 |
-
for l in self.convs:
|
326 |
-
x = l(x)
|
327 |
-
x = F.leaky_relu(x, modules.LRELU_SLOPE)
|
328 |
-
fmap.append(x)
|
329 |
-
x = self.conv_post(x)
|
330 |
-
fmap.append(x)
|
331 |
-
x = torch.flatten(x, 1, -1)
|
332 |
-
|
333 |
-
return x, fmap
|
334 |
-
|
335 |
-
|
336 |
-
class DiscriminatorS(torch.nn.Module):
|
337 |
-
def __init__(self, use_spectral_norm=False):
|
338 |
-
super(DiscriminatorS, self).__init__()
|
339 |
-
norm_f = weight_norm if use_spectral_norm == False else spectral_norm
|
340 |
-
self.convs = nn.ModuleList([
|
341 |
-
norm_f(Conv1d(1, 16, 15, 1, padding=7)),
|
342 |
-
norm_f(Conv1d(16, 64, 41, 4, groups=4, padding=20)),
|
343 |
-
norm_f(Conv1d(64, 256, 41, 4, groups=16, padding=20)),
|
344 |
-
norm_f(Conv1d(256, 1024, 41, 4, groups=64, padding=20)),
|
345 |
-
norm_f(Conv1d(1024, 1024, 41, 4, groups=256, padding=20)),
|
346 |
-
norm_f(Conv1d(1024, 1024, 5, 1, padding=2)),
|
347 |
-
])
|
348 |
-
self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1))
|
349 |
-
|
350 |
-
def forward(self, x):
|
351 |
-
fmap = []
|
352 |
-
|
353 |
-
for l in self.convs:
|
354 |
-
x = l(x)
|
355 |
-
x = F.leaky_relu(x, modules.LRELU_SLOPE)
|
356 |
-
fmap.append(x)
|
357 |
-
x = self.conv_post(x)
|
358 |
-
fmap.append(x)
|
359 |
-
x = torch.flatten(x, 1, -1)
|
360 |
-
|
361 |
-
return x, fmap
|
362 |
-
|
363 |
-
|
364 |
-
class MultiPeriodDiscriminator(torch.nn.Module):
|
365 |
-
def __init__(self, use_spectral_norm=False):
|
366 |
-
super(MultiPeriodDiscriminator, self).__init__()
|
367 |
-
periods = [2,3,5,7,11]
|
368 |
-
|
369 |
-
discs = [DiscriminatorS(use_spectral_norm=use_spectral_norm)]
|
370 |
-
discs = discs + [DiscriminatorP(i, use_spectral_norm=use_spectral_norm) for i in periods]
|
371 |
-
self.discriminators = nn.ModuleList(discs)
|
372 |
-
|
373 |
-
def forward(self, y, y_hat):
|
374 |
-
y_d_rs = []
|
375 |
-
y_d_gs = []
|
376 |
-
fmap_rs = []
|
377 |
-
fmap_gs = []
|
378 |
-
for i, d in enumerate(self.discriminators):
|
379 |
-
y_d_r, fmap_r = d(y)
|
380 |
-
y_d_g, fmap_g = d(y_hat)
|
381 |
-
y_d_rs.append(y_d_r)
|
382 |
-
y_d_gs.append(y_d_g)
|
383 |
-
fmap_rs.append(fmap_r)
|
384 |
-
fmap_gs.append(fmap_g)
|
385 |
-
|
386 |
-
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
|
387 |
-
|
388 |
-
|
389 |
-
|
390 |
-
class SynthesizerTrn(nn.Module):
|
391 |
-
"""
|
392 |
-
Synthesizer for Training
|
393 |
-
"""
|
394 |
-
|
395 |
-
def __init__(self,
|
396 |
-
n_vocab,
|
397 |
-
spec_channels,
|
398 |
-
segment_size,
|
399 |
-
inter_channels,
|
400 |
-
hidden_channels,
|
401 |
-
filter_channels,
|
402 |
-
n_heads,
|
403 |
-
n_layers,
|
404 |
-
kernel_size,
|
405 |
-
p_dropout,
|
406 |
-
resblock,
|
407 |
-
resblock_kernel_sizes,
|
408 |
-
resblock_dilation_sizes,
|
409 |
-
upsample_rates,
|
410 |
-
upsample_initial_channel,
|
411 |
-
upsample_kernel_sizes,
|
412 |
-
n_speakers=0,
|
413 |
-
gin_channels=0,
|
414 |
-
use_sdp=True,
|
415 |
-
**kwargs):
|
416 |
-
|
417 |
-
super().__init__()
|
418 |
-
self.n_vocab = n_vocab
|
419 |
-
self.spec_channels = spec_channels
|
420 |
-
self.inter_channels = inter_channels
|
421 |
-
self.hidden_channels = hidden_channels
|
422 |
-
self.filter_channels = filter_channels
|
423 |
-
self.n_heads = n_heads
|
424 |
-
self.n_layers = n_layers
|
425 |
-
self.kernel_size = kernel_size
|
426 |
-
self.p_dropout = p_dropout
|
427 |
-
self.resblock = resblock
|
428 |
-
self.resblock_kernel_sizes = resblock_kernel_sizes
|
429 |
-
self.resblock_dilation_sizes = resblock_dilation_sizes
|
430 |
-
self.upsample_rates = upsample_rates
|
431 |
-
self.upsample_initial_channel = upsample_initial_channel
|
432 |
-
self.upsample_kernel_sizes = upsample_kernel_sizes
|
433 |
-
self.segment_size = segment_size
|
434 |
-
self.n_speakers = n_speakers
|
435 |
-
self.gin_channels = gin_channels
|
436 |
-
|
437 |
-
self.use_sdp = use_sdp
|
438 |
-
|
439 |
-
self.enc_p = TextEncoder(n_vocab,
|
440 |
-
inter_channels,
|
441 |
-
hidden_channels,
|
442 |
-
filter_channels,
|
443 |
-
n_heads,
|
444 |
-
n_layers,
|
445 |
-
kernel_size,
|
446 |
-
p_dropout)
|
447 |
-
self.dec = Generator(inter_channels, resblock, resblock_kernel_sizes, resblock_dilation_sizes, upsample_rates, upsample_initial_channel, upsample_kernel_sizes, gin_channels=gin_channels)
|
448 |
-
self.enc_q = PosteriorEncoder(spec_channels, inter_channels, hidden_channels, 5, 1, 16, gin_channels=gin_channels)
|
449 |
-
self.flow = ResidualCouplingBlock(inter_channels, hidden_channels, 5, 1, 4, gin_channels=gin_channels)
|
450 |
-
|
451 |
-
if use_sdp:
|
452 |
-
self.dp = StochasticDurationPredictor(hidden_channels, 192, 3, 0.5, 4, gin_channels=gin_channels)
|
453 |
-
else:
|
454 |
-
self.dp = DurationPredictor(hidden_channels, 256, 3, 0.5, gin_channels=gin_channels)
|
455 |
-
|
456 |
-
if n_speakers >= 1:
|
457 |
-
self.emb_g = nn.Embedding(n_speakers, gin_channels)
|
458 |
-
|
459 |
-
def forward(self, x, x_lengths, y, y_lengths, sid=None):
|
460 |
-
|
461 |
-
x, m_p, logs_p, x_mask = self.enc_p(x, x_lengths)
|
462 |
-
if self.n_speakers > 0:
|
463 |
-
g = self.emb_g(sid).unsqueeze(-1) # [b, h, 1]
|
464 |
-
else:
|
465 |
-
g = None
|
466 |
-
|
467 |
-
z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g)
|
468 |
-
z_p = self.flow(z, y_mask, g=g)
|
469 |
-
|
470 |
-
with torch.no_grad():
|
471 |
-
# negative cross-entropy
|
472 |
-
s_p_sq_r = torch.exp(-2 * logs_p) # [b, d, t]
|
473 |
-
neg_cent1 = torch.sum(-0.5 * math.log(2 * math.pi) - logs_p, [1], keepdim=True) # [b, 1, t_s]
|
474 |
-
neg_cent2 = torch.matmul(-0.5 * (z_p ** 2).transpose(1, 2), s_p_sq_r) # [b, t_t, d] x [b, d, t_s] = [b, t_t, t_s]
|
475 |
-
neg_cent3 = torch.matmul(z_p.transpose(1, 2), (m_p * s_p_sq_r)) # [b, t_t, d] x [b, d, t_s] = [b, t_t, t_s]
|
476 |
-
neg_cent4 = torch.sum(-0.5 * (m_p ** 2) * s_p_sq_r, [1], keepdim=True) # [b, 1, t_s]
|
477 |
-
neg_cent = neg_cent1 + neg_cent2 + neg_cent3 + neg_cent4
|
478 |
-
|
479 |
-
attn_mask = torch.unsqueeze(x_mask, 2) * torch.unsqueeze(y_mask, -1)
|
480 |
-
attn = monotonic_align.maximum_path(neg_cent, attn_mask.squeeze(1)).unsqueeze(1).detach()
|
481 |
-
|
482 |
-
w = attn.sum(2)
|
483 |
-
if self.use_sdp:
|
484 |
-
l_length = self.dp(x, x_mask, w, g=g)
|
485 |
-
l_length = l_length / torch.sum(x_mask)
|
486 |
-
else:
|
487 |
-
logw_ = torch.log(w + 1e-6) * x_mask
|
488 |
-
logw = self.dp(x, x_mask, g=g)
|
489 |
-
l_length = torch.sum((logw - logw_)**2, [1,2]) / torch.sum(x_mask) # for averaging
|
490 |
-
|
491 |
-
# expand prior
|
492 |
-
m_p = torch.matmul(attn.squeeze(1), m_p.transpose(1, 2)).transpose(1, 2)
|
493 |
-
logs_p = torch.matmul(attn.squeeze(1), logs_p.transpose(1, 2)).transpose(1, 2)
|
494 |
-
|
495 |
-
z_slice, ids_slice = commons.rand_slice_segments(z, y_lengths, self.segment_size)
|
496 |
-
o = self.dec(z_slice, g=g)
|
497 |
-
return o, l_length, attn, ids_slice, x_mask, y_mask, (z, z_p, m_p, logs_p, m_q, logs_q)
|
498 |
-
|
499 |
-
def infer(self, x, x_lengths, sid=None, noise_scale=1, length_scale=1, noise_scale_w=1., max_len=None):
|
500 |
-
x, m_p, logs_p, x_mask = self.enc_p(x, x_lengths)
|
501 |
-
if self.n_speakers > 0:
|
502 |
-
g = self.emb_g(sid).unsqueeze(-1) # [b, h, 1]
|
503 |
-
else:
|
504 |
-
g = None
|
505 |
-
|
506 |
-
if self.use_sdp:
|
507 |
-
logw = self.dp(x, x_mask, g=g, reverse=True, noise_scale=noise_scale_w)
|
508 |
-
else:
|
509 |
-
logw = self.dp(x, x_mask, g=g)
|
510 |
-
w = torch.exp(logw) * x_mask * length_scale
|
511 |
-
w_ceil = torch.ceil(w)
|
512 |
-
y_lengths = torch.clamp_min(torch.sum(w_ceil, [1, 2]), 1).long()
|
513 |
-
y_mask = torch.unsqueeze(commons.sequence_mask(y_lengths, None), 1).to(x_mask.dtype)
|
514 |
-
attn_mask = torch.unsqueeze(x_mask, 2) * torch.unsqueeze(y_mask, -1)
|
515 |
-
attn = commons.generate_path(w_ceil, attn_mask)
|
516 |
-
|
517 |
-
m_p = torch.matmul(attn.squeeze(1), m_p.transpose(1, 2)).transpose(1, 2) # [b, t', t], [b, t, d] -> [b, d, t']
|
518 |
-
logs_p = torch.matmul(attn.squeeze(1), logs_p.transpose(1, 2)).transpose(1, 2) # [b, t', t], [b, t, d] -> [b, d, t']
|
519 |
-
|
520 |
-
z_p = m_p + torch.randn_like(m_p) * torch.exp(logs_p) * noise_scale
|
521 |
-
z = self.flow(z_p, y_mask, g=g, reverse=True)
|
522 |
-
o = self.dec((z * y_mask)[:,:,:max_len], g=g)
|
523 |
-
return o, attn, y_mask, (z, z_p, m_p, logs_p)
|
524 |
-
|
525 |
-
def voice_conversion(self, y, y_lengths, sid_src, sid_tgt):
|
526 |
-
assert self.n_speakers > 0, "n_speakers have to be larger than 0."
|
527 |
-
g_src = self.emb_g(sid_src).unsqueeze(-1)
|
528 |
-
g_tgt = self.emb_g(sid_tgt).unsqueeze(-1)
|
529 |
-
z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g_src)
|
530 |
-
z_p = self.flow(z, y_mask, g=g_src)
|
531 |
-
z_hat = self.flow(z_p, y_mask, g=g_tgt, reverse=True)
|
532 |
-
o_hat = self.dec(z_hat * y_mask, g=g_tgt)
|
533 |
-
return o_hat, y_mask, (z, z_p, z_hat)
|
|
|
1 |
+
import copy
|
2 |
+
import math
|
3 |
+
import torch
|
4 |
+
from torch import nn
|
5 |
+
from torch.nn import functional as F
|
6 |
+
|
7 |
+
import commons
|
8 |
+
import modules
|
9 |
+
import attentions
|
10 |
+
#import monotonic_align
|
11 |
+
|
12 |
+
from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d
|
13 |
+
from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
|
14 |
+
from commons import init_weights, get_padding
|
15 |
+
|
16 |
+
|
17 |
+
class StochasticDurationPredictor(nn.Module):
|
18 |
+
def __init__(self, in_channels, filter_channels, kernel_size, p_dropout, n_flows=4, gin_channels=0):
|
19 |
+
super().__init__()
|
20 |
+
filter_channels = in_channels # it needs to be removed from future version.
|
21 |
+
self.in_channels = in_channels
|
22 |
+
self.filter_channels = filter_channels
|
23 |
+
self.kernel_size = kernel_size
|
24 |
+
self.p_dropout = p_dropout
|
25 |
+
self.n_flows = n_flows
|
26 |
+
self.gin_channels = gin_channels
|
27 |
+
|
28 |
+
self.log_flow = modules.Log()
|
29 |
+
self.flows = nn.ModuleList()
|
30 |
+
self.flows.append(modules.ElementwiseAffine(2))
|
31 |
+
for i in range(n_flows):
|
32 |
+
self.flows.append(modules.ConvFlow(2, filter_channels, kernel_size, n_layers=3))
|
33 |
+
self.flows.append(modules.Flip())
|
34 |
+
|
35 |
+
self.post_pre = nn.Conv1d(1, filter_channels, 1)
|
36 |
+
self.post_proj = nn.Conv1d(filter_channels, filter_channels, 1)
|
37 |
+
self.post_convs = modules.DDSConv(filter_channels, kernel_size, n_layers=3, p_dropout=p_dropout)
|
38 |
+
self.post_flows = nn.ModuleList()
|
39 |
+
self.post_flows.append(modules.ElementwiseAffine(2))
|
40 |
+
for i in range(4):
|
41 |
+
self.post_flows.append(modules.ConvFlow(2, filter_channels, kernel_size, n_layers=3))
|
42 |
+
self.post_flows.append(modules.Flip())
|
43 |
+
|
44 |
+
self.pre = nn.Conv1d(in_channels, filter_channels, 1)
|
45 |
+
self.proj = nn.Conv1d(filter_channels, filter_channels, 1)
|
46 |
+
self.convs = modules.DDSConv(filter_channels, kernel_size, n_layers=3, p_dropout=p_dropout)
|
47 |
+
if gin_channels != 0:
|
48 |
+
self.cond = nn.Conv1d(gin_channels, filter_channels, 1)
|
49 |
+
|
50 |
+
def forward(self, x, x_mask, w=None, g=None, reverse=False, noise_scale=1.0):
|
51 |
+
x = torch.detach(x)
|
52 |
+
x = self.pre(x)
|
53 |
+
if g is not None:
|
54 |
+
g = torch.detach(g)
|
55 |
+
x = x + self.cond(g)
|
56 |
+
x = self.convs(x, x_mask)
|
57 |
+
x = self.proj(x) * x_mask
|
58 |
+
|
59 |
+
if not reverse:
|
60 |
+
flows = self.flows
|
61 |
+
assert w is not None
|
62 |
+
|
63 |
+
logdet_tot_q = 0
|
64 |
+
h_w = self.post_pre(w)
|
65 |
+
h_w = self.post_convs(h_w, x_mask)
|
66 |
+
h_w = self.post_proj(h_w) * x_mask
|
67 |
+
e_q = torch.randn(w.size(0), 2, w.size(2)).to(device=x.device, dtype=x.dtype) * x_mask
|
68 |
+
z_q = e_q
|
69 |
+
for flow in self.post_flows:
|
70 |
+
z_q, logdet_q = flow(z_q, x_mask, g=(x + h_w))
|
71 |
+
logdet_tot_q += logdet_q
|
72 |
+
z_u, z1 = torch.split(z_q, [1, 1], 1)
|
73 |
+
u = torch.sigmoid(z_u) * x_mask
|
74 |
+
z0 = (w - u) * x_mask
|
75 |
+
logdet_tot_q += torch.sum((F.logsigmoid(z_u) + F.logsigmoid(-z_u)) * x_mask, [1,2])
|
76 |
+
logq = torch.sum(-0.5 * (math.log(2*math.pi) + (e_q**2)) * x_mask, [1,2]) - logdet_tot_q
|
77 |
+
|
78 |
+
logdet_tot = 0
|
79 |
+
z0, logdet = self.log_flow(z0, x_mask)
|
80 |
+
logdet_tot += logdet
|
81 |
+
z = torch.cat([z0, z1], 1)
|
82 |
+
for flow in flows:
|
83 |
+
z, logdet = flow(z, x_mask, g=x, reverse=reverse)
|
84 |
+
logdet_tot = logdet_tot + logdet
|
85 |
+
nll = torch.sum(0.5 * (math.log(2*math.pi) + (z**2)) * x_mask, [1,2]) - logdet_tot
|
86 |
+
return nll + logq # [b]
|
87 |
+
else:
|
88 |
+
flows = list(reversed(self.flows))
|
89 |
+
flows = flows[:-2] + [flows[-1]] # remove a useless vflow
|
90 |
+
z = torch.randn(x.size(0), 2, x.size(2)).to(device=x.device, dtype=x.dtype) * noise_scale
|
91 |
+
for flow in flows:
|
92 |
+
z = flow(z, x_mask, g=x, reverse=reverse)
|
93 |
+
z0, z1 = torch.split(z, [1, 1], 1)
|
94 |
+
logw = z0
|
95 |
+
return logw
|
96 |
+
|
97 |
+
|
98 |
+
class DurationPredictor(nn.Module):
|
99 |
+
def __init__(self, in_channels, filter_channels, kernel_size, p_dropout, gin_channels=0):
|
100 |
+
super().__init__()
|
101 |
+
|
102 |
+
self.in_channels = in_channels
|
103 |
+
self.filter_channels = filter_channels
|
104 |
+
self.kernel_size = kernel_size
|
105 |
+
self.p_dropout = p_dropout
|
106 |
+
self.gin_channels = gin_channels
|
107 |
+
|
108 |
+
self.drop = nn.Dropout(p_dropout)
|
109 |
+
self.conv_1 = nn.Conv1d(in_channels, filter_channels, kernel_size, padding=kernel_size//2)
|
110 |
+
self.norm_1 = modules.LayerNorm(filter_channels)
|
111 |
+
self.conv_2 = nn.Conv1d(filter_channels, filter_channels, kernel_size, padding=kernel_size//2)
|
112 |
+
self.norm_2 = modules.LayerNorm(filter_channels)
|
113 |
+
self.proj = nn.Conv1d(filter_channels, 1, 1)
|
114 |
+
|
115 |
+
if gin_channels != 0:
|
116 |
+
self.cond = nn.Conv1d(gin_channels, in_channels, 1)
|
117 |
+
|
118 |
+
def forward(self, x, x_mask, g=None):
|
119 |
+
x = torch.detach(x)
|
120 |
+
if g is not None:
|
121 |
+
g = torch.detach(g)
|
122 |
+
x = x + self.cond(g)
|
123 |
+
x = self.conv_1(x * x_mask)
|
124 |
+
x = torch.relu(x)
|
125 |
+
x = self.norm_1(x)
|
126 |
+
x = self.drop(x)
|
127 |
+
x = self.conv_2(x * x_mask)
|
128 |
+
x = torch.relu(x)
|
129 |
+
x = self.norm_2(x)
|
130 |
+
x = self.drop(x)
|
131 |
+
x = self.proj(x * x_mask)
|
132 |
+
return x * x_mask
|
133 |
+
|
134 |
+
|
135 |
+
class TextEncoder(nn.Module):
|
136 |
+
def __init__(self,
|
137 |
+
n_vocab,
|
138 |
+
out_channels,
|
139 |
+
hidden_channels,
|
140 |
+
filter_channels,
|
141 |
+
n_heads,
|
142 |
+
n_layers,
|
143 |
+
kernel_size,
|
144 |
+
p_dropout):
|
145 |
+
super().__init__()
|
146 |
+
self.n_vocab = n_vocab
|
147 |
+
self.out_channels = out_channels
|
148 |
+
self.hidden_channels = hidden_channels
|
149 |
+
self.filter_channels = filter_channels
|
150 |
+
self.n_heads = n_heads
|
151 |
+
self.n_layers = n_layers
|
152 |
+
self.kernel_size = kernel_size
|
153 |
+
self.p_dropout = p_dropout
|
154 |
+
|
155 |
+
self.emb = nn.Embedding(n_vocab, hidden_channels)
|
156 |
+
nn.init.normal_(self.emb.weight, 0.0, hidden_channels**-0.5)
|
157 |
+
|
158 |
+
self.encoder = attentions.Encoder(
|
159 |
+
hidden_channels,
|
160 |
+
filter_channels,
|
161 |
+
n_heads,
|
162 |
+
n_layers,
|
163 |
+
kernel_size,
|
164 |
+
p_dropout)
|
165 |
+
self.proj= nn.Conv1d(hidden_channels, out_channels * 2, 1)
|
166 |
+
|
167 |
+
def forward(self, x, x_lengths):
|
168 |
+
x = self.emb(x) * math.sqrt(self.hidden_channels) # [b, t, h]
|
169 |
+
x = torch.transpose(x, 1, -1) # [b, h, t]
|
170 |
+
x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype)
|
171 |
+
|
172 |
+
x = self.encoder(x * x_mask, x_mask)
|
173 |
+
stats = self.proj(x) * x_mask
|
174 |
+
|
175 |
+
m, logs = torch.split(stats, self.out_channels, dim=1)
|
176 |
+
return x, m, logs, x_mask
|
177 |
+
|
178 |
+
|
179 |
+
class ResidualCouplingBlock(nn.Module):
|
180 |
+
def __init__(self,
|
181 |
+
channels,
|
182 |
+
hidden_channels,
|
183 |
+
kernel_size,
|
184 |
+
dilation_rate,
|
185 |
+
n_layers,
|
186 |
+
n_flows=4,
|
187 |
+
gin_channels=0):
|
188 |
+
super().__init__()
|
189 |
+
self.channels = channels
|
190 |
+
self.hidden_channels = hidden_channels
|
191 |
+
self.kernel_size = kernel_size
|
192 |
+
self.dilation_rate = dilation_rate
|
193 |
+
self.n_layers = n_layers
|
194 |
+
self.n_flows = n_flows
|
195 |
+
self.gin_channels = gin_channels
|
196 |
+
|
197 |
+
self.flows = nn.ModuleList()
|
198 |
+
for i in range(n_flows):
|
199 |
+
self.flows.append(modules.ResidualCouplingLayer(channels, hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=gin_channels, mean_only=True))
|
200 |
+
self.flows.append(modules.Flip())
|
201 |
+
|
202 |
+
def forward(self, x, x_mask, g=None, reverse=False):
|
203 |
+
if not reverse:
|
204 |
+
for flow in self.flows:
|
205 |
+
x, _ = flow(x, x_mask, g=g, reverse=reverse)
|
206 |
+
else:
|
207 |
+
for flow in reversed(self.flows):
|
208 |
+
x = flow(x, x_mask, g=g, reverse=reverse)
|
209 |
+
return x
|
210 |
+
|
211 |
+
|
212 |
+
class PosteriorEncoder(nn.Module):
|
213 |
+
def __init__(self,
|
214 |
+
in_channels,
|
215 |
+
out_channels,
|
216 |
+
hidden_channels,
|
217 |
+
kernel_size,
|
218 |
+
dilation_rate,
|
219 |
+
n_layers,
|
220 |
+
gin_channels=0):
|
221 |
+
super().__init__()
|
222 |
+
self.in_channels = in_channels
|
223 |
+
self.out_channels = out_channels
|
224 |
+
self.hidden_channels = hidden_channels
|
225 |
+
self.kernel_size = kernel_size
|
226 |
+
self.dilation_rate = dilation_rate
|
227 |
+
self.n_layers = n_layers
|
228 |
+
self.gin_channels = gin_channels
|
229 |
+
|
230 |
+
self.pre = nn.Conv1d(in_channels, hidden_channels, 1)
|
231 |
+
self.enc = modules.WN(hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=gin_channels)
|
232 |
+
self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
|
233 |
+
|
234 |
+
def forward(self, x, x_lengths, g=None):
|
235 |
+
x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype)
|
236 |
+
x = self.pre(x) * x_mask
|
237 |
+
x = self.enc(x, x_mask, g=g)
|
238 |
+
stats = self.proj(x) * x_mask
|
239 |
+
m, logs = torch.split(stats, self.out_channels, dim=1)
|
240 |
+
z = (m + torch.randn_like(m) * torch.exp(logs)) * x_mask
|
241 |
+
return z, m, logs, x_mask
|
242 |
+
|
243 |
+
|
244 |
+
class Generator(torch.nn.Module):
|
245 |
+
def __init__(self, initial_channel, resblock, resblock_kernel_sizes, resblock_dilation_sizes, upsample_rates, upsample_initial_channel, upsample_kernel_sizes, gin_channels=0):
|
246 |
+
super(Generator, self).__init__()
|
247 |
+
self.num_kernels = len(resblock_kernel_sizes)
|
248 |
+
self.num_upsamples = len(upsample_rates)
|
249 |
+
self.conv_pre = Conv1d(initial_channel, upsample_initial_channel, 7, 1, padding=3)
|
250 |
+
resblock = modules.ResBlock1 if resblock == '1' else modules.ResBlock2
|
251 |
+
|
252 |
+
self.ups = nn.ModuleList()
|
253 |
+
for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
|
254 |
+
self.ups.append(weight_norm(
|
255 |
+
ConvTranspose1d(upsample_initial_channel//(2**i), upsample_initial_channel//(2**(i+1)),
|
256 |
+
k, u, padding=(k-u)//2)))
|
257 |
+
|
258 |
+
self.resblocks = nn.ModuleList()
|
259 |
+
for i in range(len(self.ups)):
|
260 |
+
ch = upsample_initial_channel//(2**(i+1))
|
261 |
+
for j, (k, d) in enumerate(zip(resblock_kernel_sizes, resblock_dilation_sizes)):
|
262 |
+
self.resblocks.append(resblock(ch, k, d))
|
263 |
+
|
264 |
+
self.conv_post = Conv1d(ch, 1, 7, 1, padding=3, bias=False)
|
265 |
+
self.ups.apply(init_weights)
|
266 |
+
|
267 |
+
if gin_channels != 0:
|
268 |
+
self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1)
|
269 |
+
|
270 |
+
def forward(self, x, g=None):
|
271 |
+
x = self.conv_pre(x)
|
272 |
+
if g is not None:
|
273 |
+
x = x + self.cond(g)
|
274 |
+
|
275 |
+
for i in range(self.num_upsamples):
|
276 |
+
x = F.leaky_relu(x, modules.LRELU_SLOPE)
|
277 |
+
x = self.ups[i](x)
|
278 |
+
xs = None
|
279 |
+
for j in range(self.num_kernels):
|
280 |
+
if xs is None:
|
281 |
+
xs = self.resblocks[i*self.num_kernels+j](x)
|
282 |
+
else:
|
283 |
+
xs += self.resblocks[i*self.num_kernels+j](x)
|
284 |
+
x = xs / self.num_kernels
|
285 |
+
x = F.leaky_relu(x)
|
286 |
+
x = self.conv_post(x)
|
287 |
+
x = torch.tanh(x)
|
288 |
+
|
289 |
+
return x
|
290 |
+
|
291 |
+
def remove_weight_norm(self):
|
292 |
+
print('Removing weight norm...')
|
293 |
+
for l in self.ups:
|
294 |
+
remove_weight_norm(l)
|
295 |
+
for l in self.resblocks:
|
296 |
+
l.remove_weight_norm()
|
297 |
+
|
298 |
+
|
299 |
+
class DiscriminatorP(torch.nn.Module):
|
300 |
+
def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False):
|
301 |
+
super(DiscriminatorP, self).__init__()
|
302 |
+
self.period = period
|
303 |
+
self.use_spectral_norm = use_spectral_norm
|
304 |
+
norm_f = weight_norm if use_spectral_norm == False else spectral_norm
|
305 |
+
self.convs = nn.ModuleList([
|
306 |
+
norm_f(Conv2d(1, 32, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
|
307 |
+
norm_f(Conv2d(32, 128, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
|
308 |
+
norm_f(Conv2d(128, 512, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
|
309 |
+
norm_f(Conv2d(512, 1024, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
|
310 |
+
norm_f(Conv2d(1024, 1024, (kernel_size, 1), 1, padding=(get_padding(kernel_size, 1), 0))),
|
311 |
+
])
|
312 |
+
self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0)))
|
313 |
+
|
314 |
+
def forward(self, x):
|
315 |
+
fmap = []
|
316 |
+
|
317 |
+
# 1d to 2d
|
318 |
+
b, c, t = x.shape
|
319 |
+
if t % self.period != 0: # pad first
|
320 |
+
n_pad = self.period - (t % self.period)
|
321 |
+
x = F.pad(x, (0, n_pad), "reflect")
|
322 |
+
t = t + n_pad
|
323 |
+
x = x.view(b, c, t // self.period, self.period)
|
324 |
+
|
325 |
+
for l in self.convs:
|
326 |
+
x = l(x)
|
327 |
+
x = F.leaky_relu(x, modules.LRELU_SLOPE)
|
328 |
+
fmap.append(x)
|
329 |
+
x = self.conv_post(x)
|
330 |
+
fmap.append(x)
|
331 |
+
x = torch.flatten(x, 1, -1)
|
332 |
+
|
333 |
+
return x, fmap
|
334 |
+
|
335 |
+
|
336 |
+
class DiscriminatorS(torch.nn.Module):
|
337 |
+
def __init__(self, use_spectral_norm=False):
|
338 |
+
super(DiscriminatorS, self).__init__()
|
339 |
+
norm_f = weight_norm if use_spectral_norm == False else spectral_norm
|
340 |
+
self.convs = nn.ModuleList([
|
341 |
+
norm_f(Conv1d(1, 16, 15, 1, padding=7)),
|
342 |
+
norm_f(Conv1d(16, 64, 41, 4, groups=4, padding=20)),
|
343 |
+
norm_f(Conv1d(64, 256, 41, 4, groups=16, padding=20)),
|
344 |
+
norm_f(Conv1d(256, 1024, 41, 4, groups=64, padding=20)),
|
345 |
+
norm_f(Conv1d(1024, 1024, 41, 4, groups=256, padding=20)),
|
346 |
+
norm_f(Conv1d(1024, 1024, 5, 1, padding=2)),
|
347 |
+
])
|
348 |
+
self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1))
|
349 |
+
|
350 |
+
def forward(self, x):
|
351 |
+
fmap = []
|
352 |
+
|
353 |
+
for l in self.convs:
|
354 |
+
x = l(x)
|
355 |
+
x = F.leaky_relu(x, modules.LRELU_SLOPE)
|
356 |
+
fmap.append(x)
|
357 |
+
x = self.conv_post(x)
|
358 |
+
fmap.append(x)
|
359 |
+
x = torch.flatten(x, 1, -1)
|
360 |
+
|
361 |
+
return x, fmap
|
362 |
+
|
363 |
+
|
364 |
+
class MultiPeriodDiscriminator(torch.nn.Module):
|
365 |
+
def __init__(self, use_spectral_norm=False):
|
366 |
+
super(MultiPeriodDiscriminator, self).__init__()
|
367 |
+
periods = [2,3,5,7,11]
|
368 |
+
|
369 |
+
discs = [DiscriminatorS(use_spectral_norm=use_spectral_norm)]
|
370 |
+
discs = discs + [DiscriminatorP(i, use_spectral_norm=use_spectral_norm) for i in periods]
|
371 |
+
self.discriminators = nn.ModuleList(discs)
|
372 |
+
|
373 |
+
def forward(self, y, y_hat):
|
374 |
+
y_d_rs = []
|
375 |
+
y_d_gs = []
|
376 |
+
fmap_rs = []
|
377 |
+
fmap_gs = []
|
378 |
+
for i, d in enumerate(self.discriminators):
|
379 |
+
y_d_r, fmap_r = d(y)
|
380 |
+
y_d_g, fmap_g = d(y_hat)
|
381 |
+
y_d_rs.append(y_d_r)
|
382 |
+
y_d_gs.append(y_d_g)
|
383 |
+
fmap_rs.append(fmap_r)
|
384 |
+
fmap_gs.append(fmap_g)
|
385 |
+
|
386 |
+
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
|
387 |
+
|
388 |
+
|
389 |
+
|
390 |
+
class SynthesizerTrn(nn.Module):
|
391 |
+
"""
|
392 |
+
Synthesizer for Training
|
393 |
+
"""
|
394 |
+
|
395 |
+
def __init__(self,
|
396 |
+
n_vocab,
|
397 |
+
spec_channels,
|
398 |
+
segment_size,
|
399 |
+
inter_channels,
|
400 |
+
hidden_channels,
|
401 |
+
filter_channels,
|
402 |
+
n_heads,
|
403 |
+
n_layers,
|
404 |
+
kernel_size,
|
405 |
+
p_dropout,
|
406 |
+
resblock,
|
407 |
+
resblock_kernel_sizes,
|
408 |
+
resblock_dilation_sizes,
|
409 |
+
upsample_rates,
|
410 |
+
upsample_initial_channel,
|
411 |
+
upsample_kernel_sizes,
|
412 |
+
n_speakers=0,
|
413 |
+
gin_channels=0,
|
414 |
+
use_sdp=True,
|
415 |
+
**kwargs):
|
416 |
+
|
417 |
+
super().__init__()
|
418 |
+
self.n_vocab = n_vocab
|
419 |
+
self.spec_channels = spec_channels
|
420 |
+
self.inter_channels = inter_channels
|
421 |
+
self.hidden_channels = hidden_channels
|
422 |
+
self.filter_channels = filter_channels
|
423 |
+
self.n_heads = n_heads
|
424 |
+
self.n_layers = n_layers
|
425 |
+
self.kernel_size = kernel_size
|
426 |
+
self.p_dropout = p_dropout
|
427 |
+
self.resblock = resblock
|
428 |
+
self.resblock_kernel_sizes = resblock_kernel_sizes
|
429 |
+
self.resblock_dilation_sizes = resblock_dilation_sizes
|
430 |
+
self.upsample_rates = upsample_rates
|
431 |
+
self.upsample_initial_channel = upsample_initial_channel
|
432 |
+
self.upsample_kernel_sizes = upsample_kernel_sizes
|
433 |
+
self.segment_size = segment_size
|
434 |
+
self.n_speakers = n_speakers
|
435 |
+
self.gin_channels = gin_channels
|
436 |
+
|
437 |
+
self.use_sdp = use_sdp
|
438 |
+
|
439 |
+
self.enc_p = TextEncoder(n_vocab,
|
440 |
+
inter_channels,
|
441 |
+
hidden_channels,
|
442 |
+
filter_channels,
|
443 |
+
n_heads,
|
444 |
+
n_layers,
|
445 |
+
kernel_size,
|
446 |
+
p_dropout)
|
447 |
+
self.dec = Generator(inter_channels, resblock, resblock_kernel_sizes, resblock_dilation_sizes, upsample_rates, upsample_initial_channel, upsample_kernel_sizes, gin_channels=gin_channels)
|
448 |
+
self.enc_q = PosteriorEncoder(spec_channels, inter_channels, hidden_channels, 5, 1, 16, gin_channels=gin_channels)
|
449 |
+
self.flow = ResidualCouplingBlock(inter_channels, hidden_channels, 5, 1, 4, gin_channels=gin_channels)
|
450 |
+
|
451 |
+
if use_sdp:
|
452 |
+
self.dp = StochasticDurationPredictor(hidden_channels, 192, 3, 0.5, 4, gin_channels=gin_channels)
|
453 |
+
else:
|
454 |
+
self.dp = DurationPredictor(hidden_channels, 256, 3, 0.5, gin_channels=gin_channels)
|
455 |
+
|
456 |
+
if n_speakers >= 1:
|
457 |
+
self.emb_g = nn.Embedding(n_speakers, gin_channels)
|
458 |
+
|
459 |
+
def forward(self, x, x_lengths, y, y_lengths, sid=None):
|
460 |
+
|
461 |
+
x, m_p, logs_p, x_mask = self.enc_p(x, x_lengths)
|
462 |
+
if self.n_speakers > 0:
|
463 |
+
g = self.emb_g(sid).unsqueeze(-1) # [b, h, 1]
|
464 |
+
else:
|
465 |
+
g = None
|
466 |
+
|
467 |
+
z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g)
|
468 |
+
z_p = self.flow(z, y_mask, g=g)
|
469 |
+
|
470 |
+
with torch.no_grad():
|
471 |
+
# negative cross-entropy
|
472 |
+
s_p_sq_r = torch.exp(-2 * logs_p) # [b, d, t]
|
473 |
+
neg_cent1 = torch.sum(-0.5 * math.log(2 * math.pi) - logs_p, [1], keepdim=True) # [b, 1, t_s]
|
474 |
+
neg_cent2 = torch.matmul(-0.5 * (z_p ** 2).transpose(1, 2), s_p_sq_r) # [b, t_t, d] x [b, d, t_s] = [b, t_t, t_s]
|
475 |
+
neg_cent3 = torch.matmul(z_p.transpose(1, 2), (m_p * s_p_sq_r)) # [b, t_t, d] x [b, d, t_s] = [b, t_t, t_s]
|
476 |
+
neg_cent4 = torch.sum(-0.5 * (m_p ** 2) * s_p_sq_r, [1], keepdim=True) # [b, 1, t_s]
|
477 |
+
neg_cent = neg_cent1 + neg_cent2 + neg_cent3 + neg_cent4
|
478 |
+
|
479 |
+
attn_mask = torch.unsqueeze(x_mask, 2) * torch.unsqueeze(y_mask, -1)
|
480 |
+
attn = monotonic_align.maximum_path(neg_cent, attn_mask.squeeze(1)).unsqueeze(1).detach()
|
481 |
+
|
482 |
+
w = attn.sum(2)
|
483 |
+
if self.use_sdp:
|
484 |
+
l_length = self.dp(x, x_mask, w, g=g)
|
485 |
+
l_length = l_length / torch.sum(x_mask)
|
486 |
+
else:
|
487 |
+
logw_ = torch.log(w + 1e-6) * x_mask
|
488 |
+
logw = self.dp(x, x_mask, g=g)
|
489 |
+
l_length = torch.sum((logw - logw_)**2, [1,2]) / torch.sum(x_mask) # for averaging
|
490 |
+
|
491 |
+
# expand prior
|
492 |
+
m_p = torch.matmul(attn.squeeze(1), m_p.transpose(1, 2)).transpose(1, 2)
|
493 |
+
logs_p = torch.matmul(attn.squeeze(1), logs_p.transpose(1, 2)).transpose(1, 2)
|
494 |
+
|
495 |
+
z_slice, ids_slice = commons.rand_slice_segments(z, y_lengths, self.segment_size)
|
496 |
+
o = self.dec(z_slice, g=g)
|
497 |
+
return o, l_length, attn, ids_slice, x_mask, y_mask, (z, z_p, m_p, logs_p, m_q, logs_q)
|
498 |
+
|
499 |
+
def infer(self, x, x_lengths, sid=None, noise_scale=1, length_scale=1, noise_scale_w=1., max_len=None):
|
500 |
+
x, m_p, logs_p, x_mask = self.enc_p(x, x_lengths)
|
501 |
+
if self.n_speakers > 0:
|
502 |
+
g = self.emb_g(sid).unsqueeze(-1) # [b, h, 1]
|
503 |
+
else:
|
504 |
+
g = None
|
505 |
+
|
506 |
+
if self.use_sdp:
|
507 |
+
logw = self.dp(x, x_mask, g=g, reverse=True, noise_scale=noise_scale_w)
|
508 |
+
else:
|
509 |
+
logw = self.dp(x, x_mask, g=g)
|
510 |
+
w = torch.exp(logw) * x_mask * length_scale
|
511 |
+
w_ceil = torch.ceil(w)
|
512 |
+
y_lengths = torch.clamp_min(torch.sum(w_ceil, [1, 2]), 1).long()
|
513 |
+
y_mask = torch.unsqueeze(commons.sequence_mask(y_lengths, None), 1).to(x_mask.dtype)
|
514 |
+
attn_mask = torch.unsqueeze(x_mask, 2) * torch.unsqueeze(y_mask, -1)
|
515 |
+
attn = commons.generate_path(w_ceil, attn_mask)
|
516 |
+
|
517 |
+
m_p = torch.matmul(attn.squeeze(1), m_p.transpose(1, 2)).transpose(1, 2) # [b, t', t], [b, t, d] -> [b, d, t']
|
518 |
+
logs_p = torch.matmul(attn.squeeze(1), logs_p.transpose(1, 2)).transpose(1, 2) # [b, t', t], [b, t, d] -> [b, d, t']
|
519 |
+
|
520 |
+
z_p = m_p + torch.randn_like(m_p) * torch.exp(logs_p) * noise_scale
|
521 |
+
z = self.flow(z_p, y_mask, g=g, reverse=True)
|
522 |
+
o = self.dec((z * y_mask)[:,:,:max_len], g=g)
|
523 |
+
return o, attn, y_mask, (z, z_p, m_p, logs_p)
|
524 |
+
|
525 |
+
def voice_conversion(self, y, y_lengths, sid_src, sid_tgt):
|
526 |
+
assert self.n_speakers > 0, "n_speakers have to be larger than 0."
|
527 |
+
g_src = self.emb_g(sid_src).unsqueeze(-1)
|
528 |
+
g_tgt = self.emb_g(sid_tgt).unsqueeze(-1)
|
529 |
+
z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g_src)
|
530 |
+
z_p = self.flow(z, y_mask, g=g_src)
|
531 |
+
z_hat = self.flow(z_p, y_mask, g=g_tgt, reverse=True)
|
532 |
+
o_hat = self.dec(z_hat * y_mask, g=g_tgt)
|
533 |
+
return o_hat, y_mask, (z, z_p, z_hat)
|