Spaces:
Runtime error
Runtime error
"""该模块用于生成VITS文件 | |
使用方法 | |
python cmd_inference.py -m 模型路径 -c 配置文件路径 -o 输出文件路径 -l 输入的语言 -t 输入文本 -s 合成目标说话人名称 | |
可选参数 | |
-ns 感情变化程度 | |
-nsw 音素发音长度 | |
-ls 整体语速 | |
-on 输出文件的名称 | |
""" | |
from pathlib import Path | |
import utils | |
from models import SynthesizerTrn | |
import torch | |
from torch import no_grad, LongTensor | |
import librosa | |
from text import text_to_sequence, _clean_text | |
import commons | |
import scipy.io.wavfile as wavf | |
import os | |
device = "cuda:0" if torch.cuda.is_available() else "cpu" | |
language_marks = { | |
"Japanese": "", | |
"日本語": "[JA]", | |
"简体中文": "[ZH]", | |
"English": "[EN]", | |
"Mix": "", | |
} | |
def get_text(text, hps, is_symbol): | |
text_norm = text_to_sequence(text, hps.symbols, [] if is_symbol else hps.data.text_cleaners) | |
if hps.data.add_blank: | |
text_norm = commons.intersperse(text_norm, 0) | |
text_norm = LongTensor(text_norm) | |
return text_norm | |
if __name__ == "__main__": | |
import argparse | |
parser = argparse.ArgumentParser(description='vits inference') | |
#必须参数 | |
parser.add_argument('-m', '--model_path', type=str, default="logs/44k/G_0.pth", help='模型路径') | |
parser.add_argument('-c', '--config_path', type=str, default="configs/config.json", help='配置文件路径') | |
parser.add_argument('-o', '--output_path', type=str, default="output/vits", help='输出文件路径') | |
parser.add_argument('-l', '--language', type=str, default="日本語", help='输入的语言') | |
parser.add_argument('-t', '--text', type=str, help='输入文本') | |
parser.add_argument('-s', '--spk', type=str, help='合成目标说话人名称') | |
#可选参数 | |
parser.add_argument('-on', '--output_name', type=str, default="output", help='输出文件的名称') | |
parser.add_argument('-ns', '--noise_scale', type=float,default= .667,help='感情变化程度') | |
parser.add_argument('-nsw', '--noise_scale_w', type=float,default=0.6, help='音素发音长度') | |
parser.add_argument('-ls', '--length_scale', type=float,default=1, help='整体语速') | |
args = parser.parse_args() | |
model_path = args.model_path | |
config_path = args.config_path | |
output_dir = Path(args.output_path) | |
output_dir.mkdir(parents=True, exist_ok=True) | |
language = args.language | |
text = args.text | |
spk = args.spk | |
noise_scale = args.noise_scale | |
noise_scale_w = args.noise_scale_w | |
length = args.length_scale | |
output_name = args.output_name | |
hps = utils.get_hparams_from_file(config_path) | |
net_g = SynthesizerTrn( | |
len(hps.symbols), | |
hps.data.filter_length // 2 + 1, | |
hps.train.segment_size // hps.data.hop_length, | |
n_speakers=hps.data.n_speakers, | |
**hps.model).to(device) | |
_ = net_g.eval() | |
_ = utils.load_checkpoint(model_path, net_g, None) | |
speaker_ids = hps.speakers | |
if language is not None: | |
text = language_marks[language] + text + language_marks[language] | |
speaker_id = speaker_ids[spk] | |
stn_tst = get_text(text, hps, False) | |
with no_grad(): | |
x_tst = stn_tst.unsqueeze(0).to(device) | |
x_tst_lengths = LongTensor([stn_tst.size(0)]).to(device) | |
sid = LongTensor([speaker_id]).to(device) | |
audio = net_g.infer(x_tst, x_tst_lengths, sid=sid, noise_scale=noise_scale, noise_scale_w=noise_scale_w, | |
length_scale=1.0 / length)[0][0, 0].data.cpu().float().numpy() | |
del stn_tst, x_tst, x_tst_lengths, sid | |
wavf.write(str(output_dir)+"/"+output_name+".wav",hps.data.sampling_rate,audio) | |